Hidráulica Termoplus

MANUAL DE USUARIO SOFTWARE HTP MÓDULO PRESURIZADOS

Solicita la licencia gratuita del Software HTP

MANUAL DE USUARIO DEL SOFTWARE HTP

MÓDULO SISTEMAS PRESURIZADOS Versión 2022

HIDRÁULICA TERMO PLUS S.A. DE C.V.

3ª Cerrada de la 23 Sur 4501 Colonia Granjas Atoyac C.P. 72400, Puebla, Puebla Tel: 01 (222) 2 30 53 93

Arq. Rodrigo Felipe Sánchez Conde Coordinador General

Ing. Verulo Alejandro Castro Ortíz Coordinador de Ingeniería

Ing. Alma Rebeca De la Rosa Abriz Ing. Elizabeth Rosario Hernández Barrientos Ing. Luis David Morales Aldana Coordinadores de la publicación.

Ing. Fernando Rodríguez Mendieta Desarrollador Módulo Presurizados.

MANUAL DE USUARIO DEL SOFTWARE HTP Módulo Sistemas Presurizados Versión 2022

Autor: Hidráulica Termo Plus S.A. de C.V.

Edición 2022

ISBN: En tramite

Impreso y hecho en México

Distribución gratuita. Prohibida su venta.

Se autoriza la reproducción sin alteraciones del material Contenido en esta obra, sin fines de lucro y citando la fuente.

CONTENIDO

1.	Requisitos mínimos del sistema, Registro y Descarga del Software, Instalación, Activación e Inic	io de sesión4
2.	Introducción	5
3.	Fundamentos técnicos del software	6
	3.1 Generalidades	6
	3.1.1 Tipos de flujo	6
	3.1.2 Resistencia al flujo en tuberías	7
	3.1.3 Número de Reynolds	7
	3.1.4 Ecuación de Continuidad	8
	3.1.5 Ecuación de Conservación de la Energía	8
	3.1.6 Ecuaciones para pérdidas por fricción	10
	3.1.7 Rugosidad Absoluta para diferentes tuberías	11
	3.1.8 Factor de Fricción	13
	3.1.9 Pérdidas Locales	15
	3.2 Diseño Hidráulico	17
	3.2.1 Datos Básicos	17
	3.2.1.1 Consumo	17
	3.2.1.2 Demanda	19
	3.2.1.3 Dotación	19
	3.2.1.4 Gastos de Diseño	19
	3.2.1.5 Coeficiente de Variación	20
	3.2.1.6 Velocidades Máximas y Mínimas	21
	3.2.2 Elementos	22
	3.2.2.1 Tubería	22
	3.2.2.2 Piezas Especiales	23
	3.2.2.3 Tees	24
	3.2.2.4 Cruces	24
	3.2.2.5 Codos	24
	3.2.2.6 Reducciones	25
	3.2.2.7 Coples	25
	3.2.2.8 Tapones y Tapas	25
	3.2.2.9 Válvulas	25
	3.2.2.10 Bombas	27

3.2.2.11 Emisores	28
3.2.2.12 Tanques de Distribución	29
3.3 Línea de Conducción	29
3.3.1 Conducción por Bombeo	29
3.3.2 Conducción por Gravedad	
3.3.3 Conducción por Bombeo-Gravedad	31
3.4 Red de Distribución	31
3.4.1 Por gravedad	33
3.4.2 Por bombeo	33
3.4.3 Distribución mixta	33
3.5 Calculo Hidráulico	33
3.5.1 Análisis a Flujo Permanente (Estático)	33
3.5.2 Análisis a Flujo No Permanente (Periodo Extendido)	34
3.5.2.1 Ecuación de conservación de cantidad de movimiento en una tubería	35
3.5.2.2 Ecuación de continuidad en cada nodo	36
3.5.2.3 Gastos de demanda	36
3.5.2.4 Gastos suministrados	36
3.5.2.5 Método del Gradiente Hidráulico	37
3.5.3 Bombas	40
3.5.4 Válvulas	40
3.5.5 Análisis de Calidad del Agua	41
3.5.5.1 El Modelo de Transporte	41
3.5.5.2 Modelos de Mezcla en las Fuentes de Abastecimiento	41
3.5.5.3 Reacciones que afectan la Calidad de Agua	43
3.5.5.4 Reacciones en el Seno del Agua	44
3.5.5.4 Reacciones en la Pared	45
4. Interfaz de usuario HTP 2022	46
4.1 Entorno de AutoCAD	46
4.2 Inicio de HTP 2022	49
4.3 Comandos Módulo Sistemas Presurizados	50
4.3.1 Redes	50
Redes	50
4.3.2 Elementos Hidráulicos	62

4.3.2.1 Conexiones	62
4.3.2.2 Tuberías	66
4.3.2.3 Embalses	71
4.3.2.4 Depósito	73
4.3.2.5 Válvulas	77
4.3.2.6 Bombas	81
4.3.3 Cálculo Hidráulico	84
4.3.3.1 Cálculo Hidráulico	84
4.3.3.2 Revisión	85
4.3.4 Ajustes de Sistema	92
4.3.4.1 Perfil Hidráulico	92
4.3.4.2 Modificar geometría	95
4.3.4.3 Herramientas	95
4.3.5 Datos	
4.3.6 Cotización	
5. Ejemplos	
5.1 Ejemplo 1	
5.2 Ejemplo 2	
6. Anexos	
6.1 Ilustraciones	
6.2 Ecuaciones	
6.3 Tablas	
6.4 Gráficas	
7. Bibliografía	

1. Requisitos mínimos del sistema, Registro y Descarga del Software, Instalación, Activación e Inicio de sesión

Para revisar todos los datos relacionados con el software HTP como requisitos para instalarse, registro y descarga del software puede consultar el manual de drenaje Urbano 2021 localizado en la página de Hidráulica Termoplus.

Ilustración 1 Pagina Hidráulica Termoplus- SOFWARE.

En el manual de Drenaje urbano encontrará toda la información y forma de instalar el software, recordemos que el módulo de Drenaje Urbano, Topografía y Sistemas Presurizados se instala dentro de un mismo software.

C HORAULCH	DESCARGAR M	IANUALES			145	PROYECTOR	8000	ADDITENCO
		Módulo Drenaje Urbano	Módulo Presurizados	Módulo Topografía				
	HTP 2021	Drenaje Urbano 2021	Presurizados 2021	Topografia 2021				
	HTP 2019	Drenaje Urbano 2019						
	and the second second							
		SOFTWARE	E USO LIB	RE				
		Central Jun Schware	Desicargie Manuales					
		2QU	E 157					

Ilustración 2 Descarga de Manuales.

El manual de Drenaje Urbano contiene toda la información en cuanto a necesidades, registro, descarga, instalación e inicio de sesión del software HTP.

2. Introducción

Los significativos avances tecnológicos que se han producido a través del tiempo han originado cambios en la manera de desenvolverse del ser humano, por lo que el uso de tecnologías actualmente es indispensable para solucionar las problemáticas y necesidades a los que se enfrenta la sociedad actual.

La ingeniería civil va de la mano con dicho avance, por lo que es necesario generar y aplicar nuevas técnicas en el ámbito laboral, estimulando así la creación de softwares que faciliten el proceso y operación para llevar a cabo una solución.

La programación de un software juega un papel muy importante ya que reduce los tiempos de elaboración de un proyecto, es decir, optimiza los procesos de cálculo, integración de costos, creación de planos, entre otros.

Aprovechando las ventajas mencionadas anteriormente, se desarrolla el Software HTP para el diseño hidráulico de los sistemas de conducción que funcionan como líneas presurizadas, como los de agua potable.

Es bien sabido que existe una gran cantidad de programas de cómputo para el cálculo hidráulico de redes de distribución o líneas de conducción, dichos programas cuentan con distintos niveles de complejidad, desde la interfaz con que se manejan hasta la capacidad de análisis que pueden desarrollar.

El módulo Sistemas Presurizados ha sido creado para resolver un alto nivel de complicación, ya que realiza el funcionamiento hidráulico por medio de un análisis de flujo permanente (análisis estático), y análisis de periodos extendidos (análisis cuasi estático), tales análisis facilitan el proyecto de redes nuevas de distribución, revisiones de redes existentes e incluso de ampliaciones o adecuaciones.

Las redes actuales de distribución se componen de tuberías de diversos materiales, así como de instalaciones hidráulicas complementarias como tanques de almacenamiento, plantas de bombeo y pozos, además de dispositivos auxiliares que permiten el control del flujo y la presión, como diversos tipos de válvulas; HTP Sistemas Presurizados hace posible el manejo y configuración de todos estos elementos y características que son necesarias, y lo hace por medio de una interfaz muy sencilla y agradable.

Además del uso práctico para el usuario, tiene el objetivo de generar la información de soporte técnico y así facilitar la integración de los expedientes para su validación y/o revisión de los proyectos ejecutivos.

Es indiscutible la utilidad del Software HTP, sin embargo, es importante remarcar que dicha herramienta solamente soluciona una parte del proyecto o estudio de un sistema, ya que permite predecir el comportamiento de una red de acuerdo a una configuración dada, por lo que él usuario es responsable de los datos capturados y de acuerdo a su juicio y/o criterio del uso de los resultados arrojados.

3. Fundamentos técnicos del software

El objetivo de dicho capitulo es presentar las teorías y ecuaciones en los que está basado el software HTP, en su módulo sistemas presurizados, para llevar a cabo el análisis hidráulico de sistemas de Agua Potable.

3.1 Generalidades

Se pretende explicar algunos conceptos básicos, sin abarcar textos completos de mecánica de fluidos o hidráulica, para comprender el flujo del agua en redes de tuberías funcionando a presión.

3.1.1 Tipos de flujo

Un fluido es una sustancia que no resiste esfuerzos cortantes; en cambio, puede deformarse continuamente y adoptar la forma del sólido que lo contenga, fenómeno que se le conoce como fluir.

Existen dos criterios principales para su clasificación: el tiempo y el espacio.

El tiempo, tipifica al flujo en:

- o *Permanente o estacionario*. Las cantidades de flujo permanecen constantes en el tiempo.
- o No permanente. Las cantidades de flujo varían en el tiempo.

El espacio clasifica al flujo en:

- o Uniforme. Las cantidades de desplazamiento, velocidad y aceleración son constantes en el tiempo
- o No uniforme o variado. Las cantidades físicas mencionadas cambian en el tiempo.

A su vez, esto tipos de flujo pueden hacer combinaciones entre sí, generando de esta manera el flujo uniforme permanente, uniforme no permanente, variado permanente y variado no permanente.

HTP Sistemas Presurizados, para efectos de análisis de flujo de agua en redes de tuberías, considera un flujo uniforme permanente, ya que es el tipo de flujo que usualmente se usa porque es más sencillo de

analizar, debido a que, de acuerdo con las definiciones anteriores, ninguna de sus características como presión y velocidad varía en el espacio y/o tiempo.

3.1.2 Resistencia al flujo en tuberías

En las líneas de conducción, un fluido se desplaza por la diferencia de energía específica del mismo entre dos puntos dentro de la conducción. El movimiento del fluido por la conducción genera una pérdida de energía por fricción, debida al rozamiento viscoso de las diferentes capas del fluido y al rozamiento con la pared de la tubería, la cual presenta una rugosidad principalmente en función del tipo de material, la cual se describirá en apartados posteriores.

3.1.3 Número de Reynolds

En la ingeniería hidráulica el número de Reynolds está en función de la densidad, la viscosidad y la velocidad del fluido, así como de un diámetro característico. Conocer esta característica del fluido nos permite que el cálculo para el diseño de estructuras hidráulicas sea más fácil, pues de esta forma podemos reconocer el tipo de flujo adquirido por el fluido que se encuentra en estudio. Se puede obtener con base a la siguiente ecuación:

$$R_e = \frac{v \cdot D}{\mu}$$

Ecuación 1 Número de Reynolds

donde:

v = Velocidad del fluido (m/s) D = Diámetro de la tubería (m) $\mu =$ Viscosidad del fluido (Pa·s)

Una vez conocido el valor de Número de Reynolds es posible realizar una clasificación del tipo de flujo con base a esta característica:

- Laminar. El movimiento de las partículas se produce siguiendo trayectorias separadas perfectamente definidas (Re < 2100).
- \circ *Transición*. Se presentan algunos movimientos intermitentes de partículas (2100 \leq Re < 4000).
- *Turbulento*. Las partículas se mueven sobre trayectorias completamente erráticas, sin seguir un orden establecido (Re ≥ 4000).

Ilustración 3 Esquema del flujo laminar.

Ilustración 4 Esquema del flujo en transición.

Ilustración 5 Esquema del flujo turbulento.

3.1.4 Ecuación de Continuidad

El principio de continuidad puede explicarse de forma simple como: "La diferencia entre la cantidad de masa que ingresa a un volumen de control y aquella que se extrae del mismo es igual al cambio en el almacenamiento dentro del propio volumen".

La cantidad de agua en el volumen de control, así como la que entra o sale del mismo puede cuantificarse en unidades de; masa (kg), peso (N) o de volumen (m³) por unidad de tiempo, kg/s, N/s o m³/s, siendo esta última la que se da origen al concepto de flujo volumétrico o gasto (Q), tan común en la práctica.

El gasto puede ser evaluado en una sección transversal de un flujo si se conocen la velocidad media del flujo y el área hidráulica, pues su producto es precisamente igual al gasto:

 $Q = A \cdot V$

Ecuación 2 Continuidad

donde:

 $Q = \text{Gasto} (\text{m}^3/\text{s})$

A =Área hidráulica (m²)

V = Velocidad media del flujo (m/s)

3.1.5 Ecuación de Conservación de la Energía

La energía total contenida en un fluido en movimiento es la suma de las energías correspondientes a la posición o elevación del flujo con respecto a un nivel de referencia (energía potencial), la presión estática (energía de presión)

y la presión dinámica (energía cinética); lo cual expresado en términos matemáticos para un flujo con superficie libre se puede escribir como:

$$H = z + \frac{\rho}{\gamma} + \alpha \frac{V^2}{2g}$$

Ecuación 3 Conservación de la Energía

donde:

H = Energía total o carga hidráulica (m)

z = Nivel del eje de la tubería con respecto a un nivel de referencia, equivale a la carga de posición (m)

 ρ/γ = Carga de presión (m)

 α = Coeficiente de Coriolis o de energía (adim)

 $V^2/2g =$ Carga de velocidad (m)

El coeficiente de Coriolis permite considerar una velocidad media del flujo y no la distribución real de velocidades. De acuerdo con el principio de conservación de la energía aplicado a un flujo a presión entre dos secciones transversales, se obtiene la siguiente ecuación:

$$z_1 + \frac{\rho_1}{\gamma} + \alpha_1 \frac{{V_1}^2}{2g} = z_2 + \frac{\rho_2}{\gamma} + \alpha_2 \frac{{V_2}^2}{2g} + h_f$$

Ecuación 4 Conservación de la Energía entre dos secciones

donde:

 $z_1 y z_2$ = Nivel del eje de la tubería con respecto a un nivel de referencia, equivale a la carga de posición en la sección 1 y 2 (m)

 $\rho_1/\gamma y \rho_2/\gamma =$ Carga de presión en la sección 1 y 2 (m)

 $\alpha_1 y \alpha_2$ = Coeficiente de Coriolis o de energía en las secciones 1 y 2 (adim)

 $V_1^2/2g y V_2^2/2g =$ Carga de velocidad en las secciones 1 y 2 (m)

hf = Sumatoria de las pérdidas por fricción y locales entre las secciones 1 y 2 (m)

Ilustración 6 Secciones para un Volumen de Control

3.1.6 Ecuaciones para pérdidas por fricción.

La pérdida de carga o altura piezométrica en una tubería debida a la fricción por el paso del agua, puede calcularse utilizando tres fórmulas diferentes:

1) Hazen-Williams

Puede emplearse para líquidos distintos del agua, sin embargo, fue desarrollada originalmente sólo para flujo turbulento. Su cálculo está en función de la siguiente ecuación:

$$h_f = L \left[\frac{V}{0.85 \, C_h \, R^{0.63}} \right]^{1.852}$$

Ecuación 5 Pérdidas por fricción - Hazen Williams

donde:

hf = Pérdida por fricción (m)

$$Ch =$$
 Factor de fricción (adim)

- L = Longitud de la tubería (m)
- V = Velocidad media (m/s)
- R =Radio hidráulico (m)

2) Chezy-Manning

Es utilizada regularmente para canales y tuberías de gran diámetro, donde se presenta gran turbulencia. Su cálculo está en función de la siguiente ecuación:

$$h_f = \frac{10.3 \ Q^2 \ n^2 \ L}{D^{5.32}}$$

Ecuación 6 Pérdidas por fricción - Chezy Manning

donde:

- hf = Pérdida por fricción (m)
- n = Factor de fricción (adim)

$$Q = Gasto (m3/s)$$

L = Longitud de conducción (m/s)

D = Diámetro de la tubería (m)

3) Darcy-Weisbach

La fórmula de Darcy-Weisbach es la más adecuada ya que es aplicable a cualquier tipo de líquido y régimen. Su cálculo está en función de la siguiente ecuación:

 $h_f = f rac{L \cdot V^2}{D \cdot 2g}$ Ecuación 7 Pérdidas por fricción - Darcy Weisbach

donde:

hf = Pérdida por fricción (m)

f = Factor de fricción (adim)

L = Longitud de la tubería (m)

V = Velocidad media (m/s)

D = Diámetro de la tubería (m)

g = Aceleración de la gravedad (m/s2)

El Software HTP Módulo Presurizados deja a disposición del usuario la elección con la que desea realizar los cálculos de las pérdidas de carga por fricción, teniendo en cuenta las ecuaciones anteriores.

3.1.7 Rugosidad Absoluta para diferentes tuberías

La rugosidad absoluta, se define como el conjunto de irregularidades de diferentes formas y tamaños que pueden presentarse en el interior de una tubería, a lo largo de los años se han realizados diversos estudios experimentales para conocer esta propiedad.

La **Tabla 1** presenta valores de rugosidad absoluta (ϵ) de acuerdo al material de la tubería.

Material	ε (mm)
Tubos lisos	
Vidrio, cobre, latón, madera (bien cepillada), acero nuevo soldado y con una mano interior de pintura; tubos de acero de precisión sin costura, serpentines industriales, plástico, hule.	0.0015
Tubos industriales de latón	0.025
Tubos de madera	0.2 a 1
Fierro forjado	0.05
Fierro funido nuevo	0.25
Fierro fundido, con protección interior de asfalto	0.12

Tabla 1 Rugosidades para diferentes materiales (Sotelo 2002) 1 de 3

Material	ε (mm)
Tubos lisos	
Fierro fundido oxidado	1 a 1.5
Fierro fundido, con incrustaciones	1.5 a 3
Fierro fundido, centrifugado	0.05
Fierro fundido nuevo, con bridas o juntas de macho y campana	0.15 a 0.3
Fierro fundido usado, con bridas o juntas de macho y campana	2 a 3.5
Fierro fundido para agua potable con bastantes incrustaciones y diámetro de 50 a 125 mm.	1 a 4
Fierro galvanizado	0.15
Acero rolado, nuevo	0.04 a 0.1
Acero laminado, nuevo	0.05
Acero laminado con protección interior de asfalto	0.05
Tubos de acero soldado de calidad normal	
Nuevo	0.05 a 0.10
Limpiado después de mucho uso	0.15 a 0.20
Moderadamente oxidado, con pocas incrustaciones	0.4
Con muchas incrustaciones	3
Con remaches transversales, en buen estado	0.1
Con costura longitudinal y una línea transversal de remaches en cada junta, o bien laqueado interiormente	0.3 a 0.4
Con líneas transversal de remaches, sencilla o doble; o tubos remachados con doble hilera longitudinal de remaches e hilera transversal sencilla, sin incrustaciones	0.60 a 0.7
Acero soldado, con hilera transversal sencilla de pernos en cada junta, laqueado interior, sin oxidaciones, con circulación de agua turbia	1
Acero soldado, con doble hilera transversal de pernos, agua turbia, tuberías remachadas con doble costura longitudinal de remaches y transversal sencilla, interior asfaltado o laqueado.	1.2 a 1.3
Acero soldado, con costura doble de remaches transversales, muy oxidado. Acero remachado, de cuatro a seis filas longitudinales de remaches, con mucho tiempo de servicio.	2
Tubos remachados, con filas longitudinales y transversales	
a) Espesor de lámina < 5 mm	0.65
b) Espesor de lámina de 5 a 12 mm	1.95
c) Espesor de lámina > 12 mm, o entre 6 y 12 mm, si las hileras de pernos tienen cubrejuntas	3
d) Espesor de lámina > 12 mm con cubrejuntas	5.5
Tubos remachados, con filas longitudinales y transversales	
Tubos remachados, con cuatro filas transversales y seis longitudinales con cubrejuntas interiores	4

Asbesto-cemento nuevo	0.025
Asbesto-cemento, con protección interior de asfalto	0.0015
Concreto centrifugado, nuevo	0.16

Tabla 2 Rugosidades para diferentes materiales (Sotelo 2002) 2 de 3

Material	ε (mm)			
Tubos remachados, con filas longitudinales y transversales				
Concreto centrifugado, con protección bituminosa	0.0015 a 0.125			
Concreto en galerías, colado con cimbra normal de madera	1 a 2			
Concreto en galerías, colado con cimbra rugosa de madera	10			
Concreto armado en tubos y galerías, con acabado interior cuidadosamente terminado a mano	0.01			
Concreto de acabado liso	0.025			
Conductos de concreto armado, con acabado liso y varios años de servicio.	0.2 a 0.3			
Concreto alisado interiormente con cemento	0.25			
Galerías con acabado interior de cemento	1.5 a 1.6			
Concreto con acabado normal	1 a 3			
Concreto con acabado rugoso	10			
Cemento liso	0.3 a 0.8			
Cemento no pulido	1 a 2			
Concreto presforzado Freyssinet	0.04			
Concreto presforzado Bona y Socoman	0.25			
Mampostería de piedra, bien junteada	1.2 a 2.55			
Mampostería de piedra rugosa, sin juntear	8 a 15			
Mampostería de piedra, mal acabada	1.5 a 3			

Tabla 3 Rugosidades para diferentes materiales (Sotelo 2002) 3 de 3

3.1.8 Factor de Fricción

El Software HTP Módulo Presurizados emplea distintos métodos para calcular el factor de fricción, dependiendo del tipo de régimen.

Para flujo laminar, es decir, Re < 2000 se emplea la ecuación de Hagen-Poiseuille, la cual fue derivada en 1838.

$$f = \frac{64}{Re}$$

Ecuación 8 Hagen-Poiseuille

donde:

f = Factor de fricción Re = Número de Reynolds

Para flujo turbulento, con Re > 4000, Coolebrook y White en el año 1939 presentaron una ecuación empírica en la que está contemplada la rugosidad absoluta de la pared interior de una tubería.

$$\frac{1}{\sqrt{f}} = -2log\left(\frac{\varepsilon/D}{3.71} + \frac{2.51}{R_e \cdot \sqrt{f}}\right)$$

Ecuación 9 Coolebrook y White

donde:

 ε = Rugosidad absoluta de la pared interior del tubo (m)

D = Diámetro de la tubería (m)

Re = Número de Reynolds (adim)

f = Factor de fricción (adim)

Finalmente, para el flujo en transición, cuyo Número de Reynolds (Re) oscila entre 2000 y 4000 se aplica la interpolación cúbica de Lewis Ferry Moody.

Moody preparó el diagrama universal, que lleva su nombre, para determinar el coeficiente de fricción f en tuberías de rugosidad comercial que transporta cualquier líquido.

La precisión en el uso del diagrama universal de Moody depende de la selección de ε , según el material de que está construido el tubo, dicho diagrama se presenta a continuación.

Ilustración 7 Diagrama de Moody (Sotelo 2002)

3.1.9 Pérdidas Locales

Las pérdidas locales se presentan en la tubería debido al incremento de la turbulencia cuando el flujo pasa por algún accesorio. La importancia de tomar en cuenta estas pequeñas pérdidas depende de la precisión deseada en los resultados. La ecuación para el cálculo de las pérdidas locales h_L , que fue definida en la ecuación de la energía tiene la siguiente forma:

$$h_L = k rac{V^2}{2g}$$
Ecuación 10 Pérdidas por accesorios

donde:

 h_L = Pérdidas locales o menores (m)

- g = Aceleración de la gravedad (m/s²)
- k =Coeficiente para el cálculo de pérdidas locales (adim)
- V = Velocidad del fluido (m/s)

Los valores del coeficiente k corresponden a cada uno de los accesorios que pueden presentarse en líneas de conducciones, se recomienda que las pérdidas locales puedan ser definidas o estimadas con base a los valores

proporcionados por los fabricantes, en caso contrario y de no tener acceso a ellos, se pueden tomar los valores que presenta Sotelo, el Software HTP Modulo Presurizados maneja los coeficientes presentados en la **¡Error! No se encuentra el origen de la referencia.**

Elemento	k
Válvulas	ĸ
Válvula de globo, completamente abierta	10
Válvula en ángulo, completamente abierta	5
Válvula check completamente abierta	2.5
Válvula de compuerta, completamente abierta	0.2
Válvula de compuerta, con 3/4 de apertura	1-1.15
Válvula de compuerta, con 1/2 de apertura	5.6
Válvula de compuerta, con 1/4 de apertura	24
Accesorios	k
Codo de radio corto (r/d= ± 1)	0.9
Codo de radio mediano	0.75-0.80
Codo de gran radio (r/d= ± 1.5)	0.6
Codo de 45°	0.40-0.42
Retorno (curva en U)	2.2
Retorno (curva en U) Tee en sentido recto	2.2 0.3
Retorno (curva en U) Tee en sentido recto Tee a través de la salida lateral	2.2 0.3 1.8

Elemento	k
Accesorios	К
Yee de 45°, en sentido recto	0.3
Yee de 45°, salida lateral	0.8
Entrada recta a tope	0.5
Entrada con boca acampanada	0.1
Entrada con tubo reentrante	0.9
Salida	1
Depósito a tubería (pérdida a la entrada)	k
Conexión a ras de la pared	0.5
Tubería entrante	1
Conexión abocinada	0.05
De tubería a depósito (pérdida a la salida)	1
Codos y Tees	k
Codo de 45°	0.35-0.45
Codo de 90°	0.50-0.75
Tees	1.50-2.00

Tabla 4 Coeficiente K para diferentes accesorios (Sotelo 2002)

3.2 Diseño Hidráulico

3.2.1 Datos Básicos

3.2.1.1 Consumo

El consumo es la parte del suministro de agua potable que en forma general es empleado por los usuarios, sin considerar las pérdidas del sistema. Sus unidades son m3/d o l/d.

El consumo está en función de la región, las condiciones climatológicas e hidrológicas, las costumbres de la población, actividades económicas, todo esto tiene una influencia directa en la cantidad de agua que es consumida, con base a esto, es recomendable considerar un consumo promedio diario de 100 l/hab, el cual está en función del uso doméstico de la **¡Error! No se encuentra el origen de la referencia.**

Uso	Consumo diario l/hab
Bebida, cocina y limpieza	30
Eliminación de excretas	40
Aseo personal	30
Tabla E Consuma domástica on al	man a dia mumal

Tabla 5 Consumo doméstico en el medio rural

En zonas urbanas, el consumo de agua se determina de acuerdo con el tipo de usuario, esta clasificación se resume en la siguiente ilustración:

Ilustración 8 Tipos de consumo de acuerdo con los usuarios

Consumo Doméstico

Este se refiere al agua usada en las viviendas. Depende principalmente del clima y la clase socioeconómica de los usuarios. El consumo doméstico medio de una clase socioeconómica puede presentar diferencias, por diversas causas, entre ellas están, la presión en la red, la intermitencia en el servicio, la suficiencia del abastecimiento de agua, la existencia de alcantarillado sanitario y el precio del agua.

Para determinar cuáles son los factores que intervienen en el consumo de agua potable y sus variaciones de acuerdo al clima y al nivel socioeconómico se pueden emplear las siguientes tablas.

Clima	Со	Subtotal		
Clima	Bajo	Medio	Alto	por Clima
Cálido Húmedo	198	206	243	201
Cálido Subhúmedo	175	203	217	191
Seco o Muy Seco	184	191	202	190
Templado o Frío	140	142	145	142

Tabla 6 Promedio del consumo de agua potable estimado por clima predominante

	Nivel Socioeconómico		
Clima	Bajo	Medio	Alto
	m³/toma/mes		
Cálido Húmedo	24	25	28
Cálido Subhúmedo	20	23	26
Seco o Muy Seco	22	22	22
Templado o Frío	15	16	14

Tabla 7 Promedio del consumo de agua potable estimado según nivel socioeconómico y clima

Consumo No Doméstico

Éste es el que se utiliza en industrias, comercios y servicios por personas que no habitan en ellas.

Para estimar el consumo unitario de este tipo de usuario, se deben utilizar los datos de medición históricos del organismo operador.

3.2.1.2 Demanda

Demanda Actual

La demanda actual es la suma de los consumos para cada tipo de usuario más las pérdidas físicas.

Pérdidas Físicas

Se refieren al agua que se escapa por fugas en las tuberías, tanques, tomas domiciliarias. Lo más recomendable es realizar un estudio de fugas, el cual deberá incluir trabajos de campo.

Proyección de la demanda

Para efectos de diseño es importante determinar la demanda futura. Esta demanda se calcula con base en los consumos de las diferentes clases socioeconómicas, la actividad comercial, industrial, la demanda actual, el pronóstico de crecimiento de la población y su actividad económica.

3.2.1.3 Dotación

La dotación es la cantidad de agua asignada a cada habitante, considerando todos los consumos de los servicios y las pérdidas físicas en el sistema, en un día medio anual y sus unidades están dadas en l/hab al día.

El termino de dotación media de una localidad, se obtiene a partir de los consumos registrados por el organismo operador o de un estudio de demandas, dividiendo el consumo total, que incluye servicio doméstico, comercial, industrial y de servicios públicos, más las pérdidas físicas de agua, entre el número de habitantes de la localidad.

Cabe hacer la aclaración que, para el diseño de los elementos de un sistema de agua potable, se calculará la dotación particular que le corresponde a cada zona, pudiéndose considerar el análisis del número de tomas (habitacional: alta, media o baja; comercial o industrial).

3.2.1.4 Gastos de Diseño

Gasto medio diario

El gasto medio es la cantidad de agua requerida para satisfacer las necesidades de una población en un día de consumo promedio, es el caudal que se debe obtener anualmente de las fuentes de abastecimiento y se determina con base en la dotación mediante la siguiente ecuación:

$$Q_{med} = \frac{P \cdot D}{86400}$$

Ecuación 11 Gasto medio diario

donde:

 Q_{med} = Gasto medio diario (lps) P = Población (habitantes) D = Dotación (l/hab/día) 86400 = Número de segundos en un día (seg/día)

Gasto máximo diario y horario

Los gastos máximo diario y máximo horario, son los requeridos para satisfacer las necesidades de la población en un día de máximo consumo, y a la hora de máximo consumo en un año tipo, respectivamente.

Los gastos máximo diario y máximo horario se obtienen a partir del gasto medio con las siguientes ecuaciones:

 $Q_{Md} = CV_d \cdot Q_{med}$ Ecuación 12 Gasto máximo diario

$$Q_{Mh} = CV_h \cdot Q_{Md}$$

Ecuación 13 Gasto máximo horario

donde:

 Q_{Md} = Gasto máximo diario (lps)

 Q_{Mh} = Gasto máximo horario (lps)

 C_{Vd} = Coeficiente de variación diaria (adim)

 C_{Vh} = Coeficiente de variación horaria (adim)

 Q_{med} = Gasto medio diario (lps)

3.2.1.5 Coeficiente de Variación

Los coeficientes de variación se derivan de la fluctuación de la demanda debido a los días laborales y otras actividades de la población. Los requerimientos de agua para un sistema de distribución no son constantes durante todo el año, ni día, sino que la demanda varía en forma diaria y horaria.

Para la obtención de los coeficientes de variación diaria y horaria lo adecuado es hacer un estudio de demanda de la localidad, pero si no se puede llevar a cabo lo anterior se podrán considerar los valores de los coeficientes de variación diaria y horaria medios que reportan en IMTA (1993), los cuales se presentan en la siguiente tabla:

Concepto	Valor	
Coeficiente de variación diaria (CV _d)	1.20 a 1.40	
Coeficiente de variación horaria (CV _h)	1.55	

Tabla 8 Coeficiente de variación diaria y horaria

El diseño de las estructuras en los sistemas de abastecimiento de agua potable depende directamente del cálculo de los gastos antes mencionados, sin embargo, su uso está en función del tipo de estructuras.

Tipo de estructuras	Diseño con gasto máximo diario	Diseño con gasto máximo horario
Obra de captación	X	
Línea de conducción antes del tanque de regulación	Х	
Tanque de regulación	х	
Línea de alimentación a la red		X
Red de distribución		x

Tabla 9 Gasto de diseño para estructuras de agua

3.2.1.6 Velocidades Máximas y Mínimas

Las velocidades permisibles del líquido en un conducto están gobernadas por las características del material del conducto y la magnitud de los fenómenos transitorios. Existen límites tanto inferiores como superiores.

La velocidad mínima de escurrimiento se fija, para evitar la precipitación de partículas de arrastre en el agua. La velocidad máxima será aquella con la cual no deberá ocasionarse erosión en las paredes de las tuberías. En la **Tabla 10** se presentan las velocidades máximas y mínimas permisibles para diferentes materiales de tubería.

Matarial de la tubería	Velocidad (m/s)		
Waterial de la tuberia	Máxima	Mínima	
Concreto simple hasta 45 cm de diámetro	3.00	0.30	
Concreto reforzado de 60 cm de diámetro o mayores	3.50	0.30	
Concreto presforzado	3.50	0.30	
Acero con revestimiento	5.00	0.30	
Acero sin revestimiento	5.00	0.30	
Acero galvanizado	5.00	0.30	
Asbesto cemento	5.00	0.30	
Fierro fundido	5.00	0.30	
Hierro dúctil	5.00	0.30	
Polietileno de alta densidad	5.00	0.30	
PVC (policloruro de vinilo)	5.00	0.30	

Tabla 10 Velocidades permisibles para diferentes tipos de materiales

3.2.2 Elementos

3.2.2.1 Tubería

Una tubería se compone de dos o más tubos ensamblados mediante un sistema de unión que permite la conducción de un fluido. En la selección del material de la tubería intervienen características como: resistencia mecánica, durabilidad, resistencia a la corrosión, capacidad de conducción, economía, facilidad de conexión y reparación, y, especialmente, la conservación de la calidad del agua.

El Software HTP Modulo Presurizados asume que las tuberías están completamente llenas en todo momento, y por consiguiente que el flujo es a presión. La dirección del flujo es siempre del nudo de mayor altura piezométrica al de menos altura.

Ilustración 9 Tubería

3.2.2.2 Piezas Especiales

1) Juntas

Las juntas se utilizan para unir dos tuberías, estas al igual que las tuberías pueden ser de materiales rígidos, semi-rígidos o flexibles.

Ilustración 10 Juntas

2) Carretes

Los carretes son tubos de pequeña longitud provistos de bridas en los extremos para su unión.

Ilustración 11 Carretes

3) Extremidades

Las extremidades son tubos de pequeña longitud que se colocan sobre alguna descarga por medio de una brida en uno de sus extremos.

Ilustración 12 Extremidades

3.2.2.3 Tees

Las tees se utilizan para unir tres conductos en forma de T, donde las tres uniones pueden ser del mismo diámetro, o dos de igual diámetro y uno menor, cuando esto último ocurre se le llama tee reducción.

Ilustración 13 Tee

3.2.2.4 Cruces

Las cruces se utilizan para unir cuatro conductos en forma de cruz, donde las cuatro uniones pueden ser del mismo diámetro, o dos mayores de igual diámetro y dos menores de igual diámetro, cuando esto último ocurre se le llama cruz reducción.

Ilustración 14 Cruz

3.2.2.5 Codos

Los codos tienen la función de unir dos conductos del mismo diámetro en un cambio de dirección ya sea horizontal o vertical, sin embargo, los ángulos disponibles variaran en función del material y el diámetro de la tubería, inclusive se recomienda verificar con el fabricante aquellas tuberías que pueden adoptar deflexiones diferentes a las mencionadas.

Ilustración 15 Codo

3.2.2.6 Reducciones

Las reducciones se emplean para unir dos tubos de diferente diámetro. En algunos materiales, como el PVC, las reducciones pueden ser en forma de espiga o de campana.

Ilustración 16 Reducción

3.2.2.7 Coples

Los coples son pequeños tramos de tubo que se utilizan para unir las espigas de dos conductos del mismo diámetro.

Ilustración 17 Cople

3.2.2.8 Tapones y Tapas

Los tapones y las tapas se colocan en los extremos de un conducto con la función de evitar la salida de flujo. En materiales de PVC, es costumbre llamarlos tapones, pudiendo ser en forma de campana o espiga.

Ilustración 18 Tapón

3.2.2.9 Válvulas

Son accesorios que se utilizan para disminuir o evitar el flujo en la tubería. El Software HTP Modulo Presurizados contempla los siguientes tipos de válvulas:

Válvula Reductora de Presión (VRP)

La válvula reductora de presión cumple la función de limitar la presión alta aguas arriba a una presión menor y constante aguas abajo, sin que le afecten las fluctuaciones en la demanda.

Válvula Sostenedora de Presión (VSP)

Esta válvula trata de mantener la presión aguas arriba de ella. Es un dispositivo provisto de un resorte calibrado para abrir la compuerta cuando la presión sobrepasa un valor determinado.

Para los dos tipos de válvulas descritos anteriormente el Software HTP Modulo Presurizados determina el momento en el que se puede encontrar la válvula, el cual puede ser:

- 4) Parcialmente abierta
- 5) Completamente abierta
- 6) Cerrada

Válvula de Rotura de Carga (VRC)

La válvula Rotura se encarga de forzar el valor de la caída de presión. Esta válvula no representa ningún componente físico, pero son muy útiles para modelizar situaciones en las que la caída de presión a través de la válvula es conocida.

Válvula de Control del Caudal (VCQ)

La válvula de Control limita el caudal de paso a través de la válvula a un valor preseleccionado, independientemente de un cambio en la presión de línea. LA VCQ es una válvula de diafragma controlada por piloto que se operan hidráulicamente.

Válvula de Regulación (VRG)

Esta válvula es bidireccional y simula una válvula parcialmente cerrada, cuyo comportamiento queda determinado por el valor del coeficiente de pérdidas en la válvula. Generalmente los fabricantes proporcionan la relación entre dicho coeficiente y el grado de apertura de la válvula.

Válvula de Propósito General (VPG)

Es utilizada para representar una línea cuya relación pérdida-caudal es proporcionada por el usuario, en lugar de seguir el comportamiento típico de las válvulas establecido por la ecuación de pérdidas. Puede emplearse para modelizar una turbina, el descenso dinámico de un pozo o una válvula reductora de presión controlada por caudal.

3.2.2.10 Bombas

Las bombas reciben la energía mecánica proveniente de un motor a través de la flecha con el fin de elevar la carga de presión del agua para conducirla en la tubería.

La gran mayoría de los sistemas de distribución y líneas de conducción de agua potable incorporan bombas en sus instalaciones para trasladar el agua a través del sistema o mantener presiones requeridas. Su aplicación específica permite:

- a) Elevar el agua desde fuentes superficiales o subterráneas a plantas de tratamiento, almacenamientos o directamente al sistema de distribución.
- b) Incrementar la presión para servir áreas de servicio ascendentes.
- c) Bombear químicos en unidades de tratamiento, transportar el agua en las instalaciones de tratamiento, retro lavado de filtros, desalojar tanques sedimentadores y remover solidos depositados.

Para que funcionen las bombas comúnmente se utilizan motores eléctricos y de combustión interna. Existen motores eléctricos de corriente directa y de corriente alterna. La elección del tipo de motor depende de diversos factores, como: la toma y el tipo de voltaje disponibles; costos de adquisición, instalación y mantenimiento; velocidad, su control o regulación; facilidad de arranque; corriente necesaria para el arranque y torque; factor de potencia y características de carga parcial.

Se debe tener cuidado de:

- 1) Proteger el motor de sobrecargas
- 2) Prevenir daños por conexiones a tierra o conductores eléctricos inapropiados.

Un dato fundamental para las bombas es su curva característica, la cual representa la relación entre el caudal que puede bombear y la altura que puede vencer.

El Software HTP Modulo Presurizados puede conocer el comportamiento de la bomba con la potencia constante que aporta la energía al fluido por unidad de tiempo, esto en el caso de que no se presente la curva característica.

Gráfica 1 Curva característica de una bomba

3.2.2.11 Emisores

Los emisores son dispositivos que permiten modelizar el flujo de salida a través de una tobera u orificio descargando a la atmósfera. El caudal de salida por un emisor varía en función de la siguiente ecuación:

$$q = \mathcal{C} \cdot p^{\gamma}$$
Ecuación 14 Coeficiente de Emiso

donde:

q = Gasto

p = Presión en la tubería

- C = Coeficiente de descarga del emisor (proporcionado por el fabricante)
- $\gamma =$ Exponente de la presión

Los emisores se emplean para simular el caudal que sale a través de un rociador en una red de extinción de incendios, o a través de un hidrante en un sistema de riego a presión. También puede emplearse para simular una fuga en una tubería o para calcular el caudal de incendios.

El Software HTP Modulo Presurizados interpreta los emisores como una propiedad del nodo, y no como un componente independiente.

3.2.2.12 Tanques de Distribución

Los tanques son utilizados en los sistemas de distribución de agua para asegurar la cantidad y la presión del agua disponible en la red. Según su construcción, pueden ser superficiales o elevados. Los superficiales se emplean cuando se dispone de terrenos elevados cerca de la zona de servicio. La selección del tipo de tanque depende del material disponible en la región de las condiciones topográficas y de la disponibilidad de terreno.

3.3 Línea de Conducción

Las conducciones deberán entregar el agua a un tanque de regulación, para tener un mejor control en la operación de los mismos, y asegurar un funcionamiento adecuado del equipo de bombeo.

Ilustración 19 Ejemplo de Línea de Conducción

El bombeo directo a red de distribución no es deseable ya que ocasionaría que las bombas, y la propia red, operaran con presiones altamente variables durante el día, lo que disminuiría la eficiencia energética del bombeo y la vida útil de las bombas y las tuberías.

De acuerdo a lo anterior, el abastecimiento del agua a los usuarios puede realizarse de las siguientes maneras:

- o Bombeo
- o Gravedad
- o Combinado

3.3.1 Conducción por Bombeo

La conducción por bombeo es necesaria cuando se requiere adicionar energía para transportar el gasto de diseño. Este tipo de conducción se usa generalmente cuando la elevación del agua en la fuente de abastecimiento es menor a la altura piezométrica requerida en el punto de entrega. El equipo de bombeo proporciona la energía necesaria para lograr el transporte del agua.

Ilustración 20 Conducción por Bombeo

Para adicionar energía hidráulica a una conducción, a la ecuación de conservación de energía se debe adicionar la carga correspondiente HB que debe suministrar el equipo de bombeo.

$$\left(Z_{1} + \frac{\rho_{1}}{\gamma} + \frac{V_{1}^{2}}{2 \cdot g}\right) - \left(Z_{2} + \frac{\rho_{2}}{\gamma} + \frac{V_{2}^{2}}{2 \cdot g}\right) = H_{f} - H_{B}$$

Ecuación 15 Conservación de la Energía con carga HB

donde:

 H_B = Energía que suministra el equipo de bombeo (m)

3.3.2 Conducción por Gravedad

Una conducción por gravedad se presenta cuando la elevación del agua en la fuente de abastecimiento es mayor a la altura piezométrica requerida o existente en el punto de entrega del agua, el transporte del fluido se logra por la diferencia de energías disponible. Es decir, se hace uso de la topografía existente de manera que la conducción se lleve a cabo sin necesidad de bombeo y se alcanza un nivel aceptable de presión.

Ilustración 21 Conducción a Gravedad

3.3.3 Conducción por Bombeo-Gravedad

Si la topografía del terreno obliga al trazo de la conducción a cruzar por partes con mayor elevación que la superficie del agua en el tanque de regulación, conviene analizar la colocación de un tanque intermedio. La instalación de dicho tanque ocasiona que se forme una conducción por bombeo-gravedad, donde la primera parte es por bombeo y la segunda por gravedad.

Ilustración 22 Conducción por Bombeo-Gravedad

3.4 Red de Distribución

Una red de distribución es el conjunto de tubos, accesorios y estructuras que conducen el agua desde tanques de servicio o de distribución hasta la toma domiciliaria o hidrantes públicos. Su finalidad es proporcionar agua a los usuarios para consumo doméstico, publico, comercial, industrial y para condiciones extraordinarias como extinguir incendios.

La red debe proporcionar este servicio todo el tiempo, en cantidad suficiente, con la calidad requerida y a una presión adecuada.

Es importante mencionar que una vez empleada el agua, esta debe ser desalojada mediante una red de alcantarillado y conducida a una planta de tratamiento, para posteriormente ser reutilizada o reintegrada a la naturaleza sin causar deterioro ambiental.

Las configuraciones que puede adoptar las redes, se refieren a la forma en la que se enlazan o trazan los tubos para abastecer de agua a la toma domiciliaria. Se tienen tres posibles configuraciones de la red:

- 1) Cerrada
- 2) Abierta
- 3) Combinada

Ilustración 23 Ejemplo Red de Distribución Cerrada

Ilustración 24 Ejemplo Red de Distribución Abierta

Ilustración 25 Ejemplo Red de Distribución Combinada

Una red de distribución se divide en dos partes para determinar su funcionamiento hidráulico:

- La red primaria: permite conducir el agua por medio de líneas troncales o principales y alimentar a las redes secundarias.
- 2) *La red secundaria:* distribuye el agua propiamente hasta la toma domiciliaria. Existen tres tipos de red secundaria:

a) *Red secundaria convencional*. En este tipo de red los conductos se unen a la red primaria y funcionan como una red cerrada.

b) *Red secundaria en dos planos*. En una red de este tipo la tubería se conecta a la red primaria en dos puntos opuestos, cuando la red está situada en el interior de los circuitos, o bien en un solo crucero de la red primaria en los casos de líneas exteriores a ellos.

c) *Red secundaria en bloques*. En este caso la tubería secundaria forma bloques que se conectan con la red primaria solamente en dos puntos y la red principal no recibe conexiones domiciliarias.

Al igual que el diseño de líneas de conducción, para redes de distribución al agua se distribuye a los usuarios en función de las condiciones locales, estas pueden ser por gravedad, bombeo y mixta.

3.4.1 Por gravedad

El agua de la fuente se conduce o bombea hasta un tanque elevado desde el cual fluye por gravedad hacia la población. De esta forma se mantiene una presión suficiente y prácticamente constante en la red para el servicio a los usuarios.

3.4.2 Por bombeo

En esta forma de distribución, el tanque se ubica después de la red en un punto opuesto a la entrada del agua por bombeo y la tubería principal se conecta directamente con la tubería que une las bombas con el tanque.

3.4.3 Distribución mixta

parte del consumo de la red se suministra por bombeo con excedencias a un tanque, del cual a su vez se abastece el resto de la red por gravedad.

3.5 Calculo Hidráulico

3.5.1 Análisis a Flujo Permanente (Estático)

Cuando la operación de la red es a presión y los gastos que circulan en sus conducciones no cambian con el tiempo, se tiene el caso de flujo permanente. Se le acostumbra llamar red estática. En una red de tubos con flujo permanente donde se conoce al menos la carga de presión de uno de sus nodos (generalmente es el nivel de la superficie libre del agua de un tanque de almacenamiento) y los gastos que entran o salen de la red (pueden ser gastos suministrados a usuarios de la red), es posible calcular las presiones en los nodos y los gastos que circulan en cada una de sus tuberías. Para encontrar las cargas y los gastos en una red se emplean los principios de conservación de la energía y de masa (continuidad).

Ilustración 26 Sección de Tubería

En la ¡Error! No se encuentra el origen de la referencia. se muestra una tubería de longitud L, funcionando a presión. Al aplicar la ecuación de la conservación de la energía entre dos secciones cualesquiera, se tiene:

$$Z_1 + \frac{P_1}{\gamma} + \alpha_1 \frac{{V_1}^2}{2 \cdot g} = Z_2 + \frac{P_2}{\gamma} + \alpha_2 \frac{{V_2}^2}{2 \cdot g} + h_f$$

Ecuación 16 Ecuación de Continuidad para dos secciones

donde:

- Z = Elevación respecto a un plano horizontal de comparación (m)
- P = Presión en el punto del centro de la sección (mca)
- V = Velocidad media en la tubería (m/s)
- α = Coeficiente de Coriolis (Valor muy cercano a 1)
- $\gamma = \text{Peso específico del agua (kg/m³)}$
- g = Aceleración de la gravedad (m/s²)
- hf = Pérdida de carga debido al rozamiento en las paredes del conducto (m)

3.5.2 Análisis a Flujo No Permanente (Periodo Extendido)

Cuando en una red que funciona a presión salen gastos variables en el tiempo (por ejemplo, para proporcionar más caudal a usuarios que lo solicitan en cierto momento del día), los gastos que existen en los tubos cambian con el tiempo. Estas condiciones corresponden a una red con flujo no permanente o una red dinámica.

Es decir, en las redes de distribución los gastos de demanda son variables a lo largo del día, a ello se debe que cambien los niveles piezométricos y gastos en su tubería. Para el estudio de estos cambios se debe tomar en cuenta el tiempo en las ecuaciones de flujo.

Un estudio de estas características permite simular el flujo en la tubería y a partir de sus resultados se determina la posibilidad de cumplir con los gastos de demanda. Se revisa su comportamiento hidráulico y el tamaño de los tanques, se establecen políticas de operación, etcétera.

Un aspecto fundamental en el método de la red dinámica es la demanda, ya que los gastos proporcionados a los usuarios dependen de la presión en la red.

En el funcionamiento de la red dinámica se aprecia que, durante los periodos de gasto de demanda inferior al gasto medio, se llenan tanques de almacenamiento; mientras en los lapsos de demanda

superior al gasto medio, el gasto se da a los usuarios con el agua que llega a los tanques y con la almacenada en ellos. De ese modo se tiene una menor variación en los gastos.

En el modelo dinámico se toma en cuenta la forma en que funcionan tanques, bombas y válvulas. Además, se consideran los lapsos en los que están en servicio los tanques y las bombas, asegurándose que las condiciones hidráulicas de la red permitan su funcionamiento. Entonces, si se desea poner en operación una bomba, se debe tener en cuenta que aportan agua a la red cuando la carga de presión se encuentra dentro del intervalo de operación de su curva característica.

La simulación del funcionamiento de la red comienza con el cálculo de cargas y gastos en régimen permanente (red estática). También con las ecuaciones del modelo dinámico se pueden obtener las cargas y los gastos de régimen permanente, para lo cual se mantienen sin cambio los niveles de tanques y gastos de demanda. Se ha notado que esto se lleva a cabo con menos iteraciones que con los métodos para la solución de redes de flujo permanente.

El modelo dinámico se basa en la solución de las ecuaciones diferenciales de continuidad y de cantidad de movimiento de flujo no permanente funcionando a presión. Para ello se emplea un esquema de diferencias finitas de tipo implícito.

3.5.2.1 Ecuación de conservación de cantidad de movimiento en una tubería

Para un tubo cualquiera de la red aplicando el principio de conservación de cantidad de movimiento, se obtiene la siguiente ecuación:

$$Q^{k+1} = \alpha^k ({h_2}^{k+1} - {h_1}^{k+1}) + \gamma^{k-1}$$

Ecuación 17 Conservación de Cantidad de Movimiento

donde

$$\alpha^{k} = \frac{\theta}{\frac{L}{ag\Delta t} + 2\theta C |Q^{k}|}$$

Ecuación 18 Área transversal del tubo

$$\gamma^{k} = \frac{(1-\theta)\left(h_{s}^{k} - h_{i}^{k}\right) + (2\theta - 1)C|Q^{k}|Q^{k} + \frac{LQ^{k}}{ag\Delta t}}{\frac{L}{ag\Delta t} + 2\theta C|Q^{k}|}$$

Ecuación 19 Área transversal del tubo (2)

donde:

- Δt = Intervalo de tiempo
- $\alpha =$ Área transversal del tubo
- L =Longitud del tubo
- g = Aceleración de la Gravedad
- θ = Factor de peso (comprendido entre cero y uno)
- C = Función de la longitud y el diámetro de las tuberías
- k = Superíndice que indica el valor de la variable en el tiempo $t=k\Delta\tau$

3.5.2.2 Ecuación de continuidad en cada nodo

En cada nodo *i* de la red y para el tiempo $t=k\Delta\tau$, se establece que la suma de los gastos que entran es igual a la de los gastos que salen. De esta forma se plantea que:

$$\sum_{i} Q^{k+1} = q_{Di}^{k+1}$$

3.5.2.3 Gastos de demanda

Para realizar la simulación de flujo no permanente, en una red de distribución de agua potable con el modelo dinámico, es necesario tener en cuenta la variación de la demanda a lo largo del día.

3.5.2.4 Gastos suministrados

En el modelo se considera que el gasto que sale de un nodo de la red en el tiempo *t* para tratar de satisfacer la demanda, depende de la carga de presión en dicho nodo y del gasto de demanda requerido en tal tiempo. El gasto suministrado por la red se calcula mediante la expresión:

$$q_R = C_d a \sqrt{2g} \sqrt{h - h_c}$$

Ecuación 21 Gasto Suministrado en la Red

donde:

 C_d = Coeficiente de descarga

a =Área de la abertura por donde sale el agua

g = Aceleración de la gravedad

 h_c = Elevación del punto medio de la sección transversal de la tubería

Se hace que h_c sea aproximadamente igual a la elevación de la superficie del terreno y que:

$$c = C_d \cdot a \cdot \sqrt{2g}$$

Ecuación 22 Coeficiente de descarga

por lo que:

$$q_R = c\sqrt{h - h_E}$$

Ecuación 23 Gasto suministrado a la Red con coeficiente de descarga

Esta expresión permite determinar el gasto que puede aportar la red en cualquier instante. El gasto que se suministra a los usuarios es el menor entre el gasto de demanda y el gasto calculado, al sustituir las ecuaciones anteriores, tenemos que:

$$q_R = \tau^k h^{k+1} + \rho^k$$

Ecuación 24 Gasto aportado en cualquier instante

donde:

$$\tau^k = \frac{0.5q_a}{(h^k - h_E)}$$

Ecuación 25 Parámetro τ

$$\rho^k = 0.5q_a(1 - \frac{h_e}{(h^k - h_E)})$$

Ecuación 26 Parámetro ρ

donde:

$$q_a = c\sqrt{h^k - h_E}$$

Ecuación 27 Parámetro qa

3.5.2.5 Método del Gradiente Hidráulico

El principio de continuidad establece que en un nodo la suma de los gastos que entran a él es igual a la suma de los gastos que salen del mismo. Al aplicar este principio en cada nodo de la red se establece una ecuación lineal en términos de los gastos.

El método que emplea el Software HTP Módulo Presurizados para resolver simultáneamente las ecuaciones de continuidad en los nudos y las ecuaciones de comportamiento hidráulico de las tuberías para un instante dado, puede clasificarse como un método híbrido de nudos y mallas.

Los autores Todini y Pilati y más tarde Salgado decidieron llamarlo "Método del Gradiente". Supongamos que tenemos una red de tuberías con N nudos de caudal y NF nudos de altura dada (embalses y depósitos). La relación entre la pérdida de carga para una tubería que va del nudo *i* al *j*, y el caudal de paso *Qij*, puede escribirse como:

 $H_i - H_j = h_{ij} = rQ_{ij}^n + mQ_{ij}^2$

Ecuación 28 Pérdida de carga en una tubería

donde:

H = Altura piezométrica en el nudo

h = Pérdida de carga

r =Coeficiente de resistencia

Q = Caudal

n = exponente del caudal

m = coeficiente de pérdidas menores

El valor del coeficiente de resistencia depende de la fórmula utilizada para el cálculo de las pérdidas. Para las bombas, la pérdida puede representarse mediante una fórmula potencial del tipo:

$$h_{ij} = -w^2(h_o - r(Q_{ij}/w)^n)$$

Ecuación 29 Pérdida de energía en bombas

donde:

ho = Altura a caudal nulo*w* = Velocidad relativa de giro*r* y *n* = Coeficientes de la curva de la bomba

El segundo sistema de ecuaciones a cumplir está configurado por la condición de equilibrio para los caudales en todos los nudos:

$$\sum_{j} Q_{ij} - D_i = 0$$

Ecuación 30 Sistema Equilibrado

para
$$i = l, ...N$$

donde:

Di = Caudal de demanda en el nudo *i* (se toma como positivo cuando entra al nudo)

Dados los valores de las alturas en los nudos de altura prefijada, se trata de encontrar una solución para las alturas *Hi* en los restantes nudos, y para los caudales *Qij* de todas las líneas que satisfagan las ecuaciones anteriores.

El método de resolución del Gradiente comienza haciendo una estimación inicial del caudal por cada tubería, sin necesidad de cumplir la ecuación de continuidad. En cada iteración del método, se obtienen las alturas piezométricas en los nudos resolviendo el sistema de ecuaciones:

Ecuación 31 Matriz para Método del Gradiente

donde:

A = Matriz Jacobiana (NxN)

H = Vector de incógnitas nodales (Nx1)

F = Vector de términos independientes (Nx1)

Los elementos de la diagonal principal de la matriz jacobiana vienen dados por:

$$A_{ii} = \sum_{j} P_{ij}$$

Ecuación 32 Diagonal principal

y los elementos no nulos fuera de la diagonal principal, por:

$$A_{ij} = -P_{ij}$$

Ecuación 33 Elementos no nulos

donde:

Pij = inversa de la derivada respecto al caudal, de la pérdida de carga en la línea que va del nudo *i* al *j*. Su expresión para las tuberías es:

$$P_{ij} = \frac{1}{nr|Q_{ij}|^{n-1} + 2m|Q_{ij}|}$$

Ecuación 34 Matriz inversa para tuberías

y para las bombas:

$$P_{ij} = \frac{1}{nw^2 r (Q_{ij}/w)^{n-1}}$$

Ecuación 35 Matriz inversa para bombas

Los términos independientes están constituidos por el caudal residual en el nudo no equilibrado, más un factor de corrección dado por:

$$F_i = \left(\sum_f Q_{if} - D_i\right) + \sum_j y_{if} + \sum_f P_{if}H_f$$

Ecuación 36 Factor de corrección

donde el último término está presente sólo para las tuberías que conectan el nudo i con un nudo de altura conocida f; por su parte, el factor de corrección del caudal Y_{ij} tiene por expresión:

$$y_{ij} = P_{ij}\left(r|Q_{ij}|^n\right) + m|Q_{ij}|^2 sgn(Q_{ij})$$

Ecuación 37 Factor de corrección del caudal Yij

para las tuberías, donde sgn(x) es 1 si x > 0 y -1 en otro caso:

$$y_{ij} = -P_{ij}w^2(h_0 - r(Q_{ij}/w)^n)$$

Ecuación 38 Factor de corrección del caudal Yij (2)

para las bombas Q_{ij} es siempre positivo en este caso.

Una vez calculadas las nuevas alturas, los nuevos caudales se obtienen mediante:

$$Q_{ij} = Q_{ij} - \left(y_{ij} - p_{ij}(H_i - H_j)\right)$$

Ecuación 39 Nuevos Caudales

3.5.3 Bombas

Para el análisis de un equipo de bombeo se emplea la curva característica carga-gasto de la bomba y una aproximación lineal basada en la serie de Taylor. La ecuación que se emplea es:

$$Q_B^{k+1} = \delta^k + \beta^k h^k$$

Ecuación 40 Análisis Equipo de Bombeo mediante serie de Taylor

donde:

$$\delta_B^k = Q_B^k - (a_1 + 2a_2h^k)h^k$$
$$\beta^k = a_1 + 2a_2h^k$$

Ecuación 41 Parámetros para la obtención de la serie de Taylor

Esta ecuación sólo se utiliza cuando h esta entre 0 y la carga máxima de la bomba.

3.5.4 Válvulas

Como en el caso estático, la pérdida de carga producida por el cierre o apertura de válvulas se toma en cuenta modificando el coeficiente de rugosidad del tubo.

La pérdida por cierre o apertura de una válvula h_L está dada por la siguiente ecuación:

$$h_L = \frac{K_L \cdot Q^2}{2ga_v^2}$$

Ecuación 42 Pérdidas en válvulas

donde:

 K_L = Coeficiente que depende del tipo de válvula

 $a_v =$ área de la válvula

Q = Gasto que controlará la válvula

g = Aceleración de la gravedad

3.5.5 Análisis de Calidad del Agua

El simulador de calidad de agua utiliza una aproximación Lagrangiana para efectuar el seguimiento, a intervalos fijos de tiempo, del destino de una serie de segmentos discretos de agua consideradas a priori, a medida que éstas avanzan por las tuberías y se mezclan en los nudos de confluencia.

3.5.5.1 El Modelo de Transporte

El método empleado por el algoritmo lagrangiano va actualizando en cada paso la concentración y el tamaño de una serie de segmentos de agua, los cuales rellenan las tuberías. A medida que avanza el tiempo, el primer segmento aguas arriba de una línea incrementa su tamaño para alojar el agua que va entrando a la misma. Al propio tiempo, el último segmento de la línea pierde volumen debido al agua que abandona la línea, reduciéndose en un tamaño equivalente. En cuanto a los segmentos intermedios, su tamaño permanece constante. En cada intervalo de tiempo del modelo de calidad, el contenido de cada segmento es sometido a las reacciones pertinentes. Además, se determina la masa y caudal total que llega a cada nodo, al tiempo que se actualizan las posiciones de todos los segmentos considerados.

A continuación, se calculan las concentraciones resultantes en los nodos, para lo cual se tiene en cuenta también las posibles contribuciones desde fuentes externas. A tal fin, éstas se actualizan antes en función del tipo de modelo de mezcla definido. Finalmente, para todas las tuberías que parten de un nudo, si la calidad resultante en el mismo difiere de la del último segmento de la tubería en una cantidad superior a la tolerancia definida por el usuario, se creará un nuevo segmento en el extremo aguas arriba de dicha tubería. Inicialmente cada tubería consta de un solo segmento cuya calidad se iguala a la calidad del nudo aguas arriba. Cuando se invierte el flujo en una tubería, los distintos segmentos de que consta en ese momento se reordenan según el nuevo sentido de circulación del agua.

3.5.5.2 Modelos de Mezcla en las Fuentes de Abastecimiento

El Software HTP, en su Modulo Presurizados, puede utilizar cuatro modelos diferentes para simular el proceso de mezcla que ocurre en las fuentes de Abastecimiento:

1. Mezcla completa

Asume que toda el agua que entra al depósito se mezcla total e instantáneamente con el agua ya almacenada. Es el modelo de mezcla más sencillo que puede formularse, no requiere ningún parámetro extra, y la práctica demuestra que se ajusta bastante bien a un gran número de depósitos de regulación.

Ilustración 27 Mezcla completa

2. Mezcla en Dos Compartimentos

Divide el volumen de almacenamiento la fuente en dos compartimentos, en cada uno de los cuales se admite la mezcla completa. Se supone además que las tuberías de entrada y salida la fuente se encuentran conectadas al primer compartimento. El agua nueva que entra a la fuente se mezcla con el agua contenida en el primer compartimento. Si éste está lleno, el exceso de agua pasa al segundo compartimento, donde se mezcla totalmente con el agua almacenada en él. Cuando el agua abandona la fuente, sale del primer compartimento, y si estuviera lleno, recibe una cantidad equivalente de agua del segundo compartimento. El primer compartimento pretende simular una zona de 'cortocircuito' entre el flujo que entra y el flujo que sale, mientras que el segundo compartimento representa una zona muerta.

Ilustración 28 Mezcla en dos compartimentos

3. Flujo en Pistón tipo FIFO

Supone que no hay mezcla alguna del agua mientras permanece en el depósito. Los diferentes volúmenes de agua, aun siendo contiguos, viajan de forma separada por el interior del depósito, de forma que el primer volumen en entrar será el primero en salir. Desde un punto de vista físico, este modelo resulta apropiado para simular depósitos con pantallas en su interior, y que operan con flujos continuos de entrada y salida. No se necesita ningún parámetro adicional para caracterizar este modelo de mezcla.

Ilustración 29 Flujo en pistón FIFO

4. Modelo de Flujo en Pistón tipo LIFO

También asume que no hay mezcla de agua entre los diferentes volúmenes que entran a la fuente. Sin embargo, a diferencia del modelo anterior, los distintos volúmenes se van apilando uno sobre otro, a medida que el agua entra o sale del depósito por el fondo. Este tipo de modelo es aplicable a torres de agua altas y estrechas, con una tubería única de entrada y salida en el fondo, y con una cantidad de movimiento del flujo entrante reducida. Como en el caso anterior, tampoco se requiere ningún parámetro adicional.

Ilustración 30 Flujo en pistón LIFO

3.5.5.3 Reacciones que afectan la Calidad de Agua

El módulo Presurizados, puede realizar el seguimiento del crecimiento o decrecimiento de una sustancia debido a reacciones internas, mientras ésta viaja a través de la red de distribución. Para

llevar ello a cabo es necesario conocer la velocidad de reacción de la sustancia y la medida en que ésta depende de su propia concentración. Las reacciones pueden producirse en el seno del líquido, y también con el material que recubre las paredes de las tuberías, tal como se muestra en la siguiente figura:

Ilustración 31 Zonas de Reacción en el interior de una Tubería

3.5.5.4 Reacciones en el Seno del Agua

El Modulo simula las reacciones que ocurren en el seno del agua mediante una cinética de orden n, lo que significa que la velocidad instantánea de reacción R de una sustancia (expresada en unidades de masa/volumen/tiempo) depende en cada momento de la concentración de dicha sustancia, de acuerdo con la expresión:

$$R = K_b \cdot C^n$$

Ecuación 43 Velocidad de Reacción

Donde:

Kb= Coeficiente de reacción en el medio

C= Concentración del reactivo (masa/volumen)

n= Orden de reacción

Nota: El coeficiente *Kb* tiene unidades de concentración elevada a la potencia (1-n) y dividido por tiempo. Su signo será positivo si la cantidad de sustancia crece con el tiempo, y negativo si decrece.

También se pueden simular reacciones que tienden a una concentración límite, ya sea por crecimiento o decrecimiento de la sustancia. En este caso, la expresión de la velocidad de reacción tiene la forma:

 $R = K_b(C_L - C) \cdot C^{n-1} \quad para \ n > 0, K_b > 0$

Ecuación 44 Velocidad de Reacción por crecimiento

$$R = K_b(C - C_L) \cdot C^{n-1} \quad para \ n > 0, K_b < 0$$

Ecuación 45 Velocidad de Reacción por decrecimiento

Donde:

CL= Concentración Límite

3.5.5.4 Reacciones en la Pared

La velocidad de reacción de las sustancias que reaccionan en, o cerca de, la pared de las tuberías, puede considerarse que depende de la concentración en el seno del agua del flujo principal mediante la expresión:

$$R = (A/V)K_wC^n$$

Ecuación 46 Reacción de Pared

Donde:

Kw= Coeficiente de reacción en la pared

(A/V)= Superficie de contacto por unidad de volumen en el interior de la tubería

El último término convierte la velocidad de reacción por unidad de área en velocidad por unidad de volumen.

Es importante mencionar que se limita las opciones para la velocidad de reacción en la pared a orden 0 u orden 1, con lo que las unidades de Kw son masa/área/tiempo o bien longitud/tiempo, dependiendo del orden de la reacción. Al igual que Kb, el coeficiente Kw debe ser proporcionado por el usuario. Los valores de Kw para reacciones de primer orden pueden ir desde 0 hasta 1,5 m/día. El coeficiente Kw debe ajustarse para tener en cuenta cualquier limitación en la transferencia de masa que pueda afectar al movimiento de reactivos y productos de reacción entre la corriente principal y la pared.

El coeficiente de reacción en la pared puede depender de la temperatura y puede también correlacionarse con la edad de la tubería y el material. En efecto, es bien sabido que con el paso del tiempo la rugosidad de las tuberías metálicas tiende a incrementarse debido a la formación de incrustaciones y tubérculos procedentes de la corrosión de las paredes. El incremento de la rugosidad da lugar a una disminución del coeficiente C de Hazen-Williams, o bien un aumento del coeficiente de rugosidad de Darcy-Weisbach, provocando en definitiva una mayor pérdida de carga en la tubería. Presurizados, requiere que el agua circule por las tuberías para que la reacción con las paredes tenga lugar. En consecuencia, la reacción con las paredes no será tenida en cuenta en las tuberías con flujo nulo.

4. Interfaz de usuario HTP 2022

Las versiones más recientes de AutoCAD muestran al usuario una forma más sencilla de trabajar a través de espacios denominados "Cintas de Opciones" que incluyen algunas interfaces gráficas facilitando el acceso a herramientas mediante el reconocimiento del icono que representa cierta acción. Las cintas sólo están disponibles en un área de trabajo diferente al de AutoCAD Clásico. La cinta a la que se recurre mayormente es la llamada Inicio, ya que recopila las herramientas más habituales.

4.1 Entorno de AutoCAD

La interacción del usuario con AutoCAD se realiza a través de comandos, al dar clic sobre un icono ubicado dentro de alguna caja de herramientas, menú o cinta, lo que realmente sucede es que se ingresa un comando asociado a una determinada acción o rutina, ya sea para crear un objeto o en su caso lo modifique.

Para entender mejor la manera de cómo manipular el programa de AutoCAD es necesario conocer los elementos que componen la pantalla o interfaz del software.

 Menú de la aplicación. Se ubica en la parte superior izquierda y se distingue por el icono de AutoCAD, su función principal es manipular los archivos creados en el mismo programa. Entre las principales tareas se encuentran: crear archivos nuevos, abrir, guardar e imprimir nuestros modelos o planos.

Ilustración 32 Menú de la Aplicación

2. Barra de herramientas de acceso rápido. Ubicada en la parte superior junto al menú de la aplicación, contiene las herramientas más usuales y el usuario puede añadir o eliminarlas. También contiene un menú desplegable con la opción de diferentes espacios de trabajo, es recomendable trabajar con Dibujo y Anotación.

Ilustración 33 Barra de Herramientas

 Barra de Menús. Se ubica en la parte superior y se caracteriza por tener los menús tradicionales de Archivo, Edición, Ver, etc. Los menús son una forma de agrupar ciertas herramientas, éstas pueden contener submenús y acceso a formularios.

Archivo	Edición	Ver	Insertar	Formato	Herr.	Dibujo	Acotar	Modificar	Paramétrico	Ventana	?	Express
Ilustración 34 Barra de Menús												

4. Cinta de opciones o Ribbon. Como se mencionó anteriormente las cintas de opciones presentan una forma sencilla de trabajar, dentro de cada cinta se presenta una agrupación para diferentes tareas. Se encuentra ubicada entre el área de trabajo y la barra de menús.

	Inicio	Inserción	Anot	tar Pa	aramét	rico	Vista	Adr	ministrar	Salida	Co	mplementos	A360	Express To	ols Aplicacione	s destacadas	HTP Dren U	rba		•	•	
Línea	ےے Polilínea	Círculo	Arco	□ • ⊕ • ₩ •	+‡+ ©3		-/ • [] •	/ 1 2	A Texto	Acotar	⊢ - ,∽ -	Propiedades de capa	♀☆ ~;£ €;€;	f ∎ 0 50 - 6 é €, - 6 €	•	Insertar	Propied	Grupos	Utilidades	Portapap	U Vista	Hodo de selección
		Dibujo 🔻				Mod	ificar 🤻	,	And	otación 🤻	,			Capas 🔻		Bloque 🔻	-	-	-		*	Táctil
	Ilustración 35 Cintas de Opciones																					

5. Área de Trabajo. Es el espacio donde se crean objetos, de inicio tiene un color negro el cual puede cambiar según las preferencias del usuario y abarca la mayoría de la pantalla.

Ilustración 36 Área de Trabajo

6. Ventana de Línea de Comandos. Se ubica en la parte inferior del área de trabajo y se caracteriza por desplegar información del tipo Texto. Cualquier acción que se lleve a cabo en el programa quedará reflejada en la Línea de Comandos, por tanto, es

importante prestar atención en todo momento ya que es el medio de comunicación entre el software y el usuario. En algunas ocasiones la línea de comandos pide ingresar datos, ciertas características o simplemente confirmar algunas tareas.

Ilustración 37 Ventana de Comandos

7. Pestañas Papel/Modelo. Se ubican en la parte inferior del área de trabajo, se distinguen la pestaña principal Modelo y Presentación. En el espacio modelo se crea el diseño o dibujo usualmente a escala 1:1 dentro de un área sin límites, en cambio, en el área de trabajo presentación se le da la apariencia final y está limitada a las medidas en las que se desee imprimir.


```
Ilustración 38 Pestañas Papel/Modelo
```

8. Barra de Estado. Se ubica en la parte inferior de toda la interfaz de AutoCAD, en ésta, se observa la posición exacta del cursor. También existen botones que permiten al usuario trabajar con ciertas características, por ejemplo: en modo orto, entrada dinámica, referencia de objetos, botón de espacio/modelo, aceleración de hardware, etc.

2820.1481, 2343.6375, 0.0000 MODELO 🏢 🏢 🝷 🖕 🍊 👻 📉 🛫 🔼 👻 🧶 📜 👻 🎉 🙏 1:1 👻 🖉 Dibujo y anotación 💌 🕂 💬 🥏 💌 🚍

llustración 39 Barras de Estado.

9. HTP 2021 se diseñó con la finalidad de contar con una interfaz de fácil interacción

Ilustración 40 Cinta de Opciones HTP (Módulo Sistemas Presurizados)

entre el usuario y el entorno de AutoCAD; así que, los comandos pueden ser llamados mediante la cinta de opciones "HTPSE_RIBBON" o desde la barra de comandos.

El módulo Sistemas Presurizados está dividido en 6 secciones: Redes, Elementos Hidráulicos, Cálculo Hidráulico, Ajustes del Sistema, Datos y Cotización. Cada una de éstas está enfocada en agrupar comandos de acuerdo con las tareas que realizan.

4.2 Inicio de HTP 2022

Para iniciar HTP 2022 abra el acceso directo generado desde la instalación de software; ubicado en el Menú Inicio o en el Escritorio. Se mostrará el formulario de lallustración 41, mismo donde podrá seleccionar la versión de AutoCAD que dispone en su equipo de cómputo y los últimos archivos trabajados.

🕭 HTP 2022	-		×
	Asistencia Hidraúlica Term asistencia@termoph	oplus is.mx	9
	Agregar Archivo	Iniciar	

Ilustración 41 Inicio de del Software HTP 2022

Posteriormente al dar clic en iniciar, se abrirá el AutoCAD con la cinta de opciones de HTP habilitada.

El formulario también mostrara la información de usuario que generó al registrarse en la plataforma de Termo Plus, mismo donde podrá modificar o actualizarla, para ello deberá dar clic en el icono que corresponde a la foto de perfil del usuario y se mostrarán sus datos de registro.

Para regresar al formulario de inicio dar clic en el icono del Software HTP.

🕭 HTP 2022					_	×		
Rev. 3.2.7				Asistencia Hidraúli asistencia@	ca Termoplus termoplus.mx	2		
(2)	Profesión Ing. Empresa Hidraúlica Temo Plus		Estado Puebla Municipio Puebla	- ·				
	Cargo Asistencia Técnica Teléfono Teléfono Móvil 2305393 332]		Asistencia Hidraúl	ICa		
				~ ~	Última Conexión: 03/07/2019 12:44:5	.mx ;9		
	Aplicar Cambios				Cerrar Sesión			

Ilustración 42 Datos del usuario de HTP 2022.

4.3 Comandos Módulo Sistemas Presurizados

4.3.1 Redes

El grupo Redes, tiene una caja de comandos:

Ilustración 43 Cinta de opciones de Red

Redes

El subgrupo Redes contiene las opciones Trazo, Reconocer, Editar, Eliminar, Configurar Parámetros, Importar y Exportar.

Ilustración 44 Comandos del Menú Redes

Active el comando y dibuje la propuesta del sistema, las líneas dibujadas no deberán ir superpuestas bajo ninguna situación, automáticamente se creará la capa "HTPTrazos".

Redes > Trazo > Indique punto inicial > Indique el punto siguiente o [deshacer]

Opción que reconoce el sistema para el diseño, HTP tiene la facilidad de seleccionar el conjunto de líneas inmerso en un grupo de capas y sólo reconocerá las que se encuentren en la capa "HTPTrazos".

Redes > Reconocer > Selecciona los trazos > Enter

Posteriormente se abrirá la ventana para la configuración del sistema con el objetivo de establecer un primer formato al sistema y sus elementos. Es importante nombrar el Sufijo de Capas, de no hacerlo, no se permite aceptar la configuración elegida.

								-		×
	Sistema									
НТР	Sufijo	o de Capa:			Сар	a: HTPSPE_SISTEMA	9	Tolerancia:	1.00	_
terísticas										
Conexiones	Act.	Color	Trar	nsp.	Fuente	Тіро	Grosor	Dián	metro(m)	
Símbolo	8		0	-		Continuous	Default	4.00		
Anotaciones			0	-	Arial Narrow	Continuous	Default			
Numeración	8		0	-	Arial Black					
Deposito	8		0	•		Continuous	Default	3.00		
Embalse			0	•		Continuous	Default	3.00		
Color	Tub eria	Tuberia	Ad	ct.	Fuente	Тіро	Grosor	E	Escala	
Linea	8		0	-		Continuous	Default			
Anotación	8		0	-	Arial Black	Continuous	Default			
Bomba	8		0	A Y		Continuous	Default	3.00		
Valvula			0	•		Continuous	Default	3.00		
							Ace	ptar	Cancela	31

Ilustración 45 Configuración del Sistema

El formulario contiene propiedades de las conexiones, accesorios y tramos.

• Características de capas.

Capas. Se designan con el nombre que compone a cada elemento del sistema, por ejemplo, en las Conexiones, tenemos Símbolo.

Estado de capa. Se activan o desactivan las capas.

Color. Elija el color que desee, se recomienda cambiar a la pestaña de "Color verdadero" con el fin de que la impresión del plano sea de acuerdo con lo establecido en la configuración de colores.

Color de índice	Color verdadero	Libros de	colores	
onalidad: Satura	ición: Lu	minancia:	Modelo d	e color:
0 😫 0	÷	0 😫	HSL	~
			Color ven almacena RGB:	dadero ado como
			Rojo:	0
			Verde:	0
			Azul:	0
Color RGB: 0.0.0				

Ilustración 46 Ventana Configuración de Color

Transparencia. Disminuye la intensidad de color de elementos o anotaciones para resaltar otros o hacerlos más visibles.

Fuente. Para cambiarla active el recuadro; en la ventana indique el tipo, estilo y también el tamaño.

Fuente:	Estilo de fuente:	Tamaño:				
Microsoft Sans Serif	Normal	8	Aceptar			
Microsoft Sans Serif 🔨	Normal ^	8 ^	Cancelar			
Microsoft Tai Le	Oblicua	10				
Microsoft YaHei	Negrita	11				
Microsoft YaHei UI	Oblicua neg	14				
Microsoft Yi Baiti 🗸 🗸		16 🗡				
Efectos	Eiemplo					
Tachado						
Subrayado	AaBb YyZz					
	Alfabeto:					
	Occidental	~				

Ilustración 47 Ventana Configuración de Fuente.

Tipo de línea. Seleccione el recuadro y aparecerá la ventana "Seleccionar tipo de línea", como se puede ver sólo hay un tipo, entonces, hacer clic en Cargar y saldrá una segunda

📕 Seleccionar tipo de líne	a		×		
Tipos de línea cargados					
Tipo línea	Aspecto	D	escripción		
Continuous		— Sol	🛕 Cargar o volver a carg	ar tipos de línea	×
			Archivo acadiso.lin		
			Tipos de línea disponibles		
			Tipo línea	Descripción	^
			ACAD_ISO02W100	ISO trazo	_
<			ACAD_ISO03W100	ISO trazo, espacio	
Aceptar	ancelar C	argar	ACAD_ISO04W100	ISO trazo largo, punto	_
			ACAD_ISO05W100	ISO trazo largo, doble punto	-
			ACAD_ISO06W100	ISO trazo largo, triple punto	
			ACAD_ISO07W100	ISO punto	
			ACAD_ISO08W100	ISO trazo largo, trazo corto	
			<		>

Ilustración 48 Ventanas Configuración de Tipo de Línea.

ventana "Cargar o volver a cargar tipos de línea", elegir el tipo de línea y Aceptar; la línea estará cargada ahora en la primera ventana y nuevamente Aceptar.

Grosor. Aumenta o disminuye el ancho de la línea,	active la opción, indique el grosor que
desee y Aceptar (¡Error! No se encuentra el origen	de la referencia.).

A Grosor de línea	?	×					
Grosor de línea:							
— Por defecto 0.00 mm		^					
0.05 mm							
0.13 mm							
0.15 mm							
0.20 mm							
0.25 mm							
0.35 mm		*					
Original: Par defecto							
Original: Por defecto Nuevo: Por defecto							
Aceptar Cancelar	Ayu	da					

Ilustración 49 Ventana Configuración de Grosor de Línea.

Diámetro. Se refiere al tamaño de la conexión, puede determinarse con relación al tamaño del sistema o dejar el 4 por defecto.

Una vez que el sistema es reconocido, las tuberías y conexiones presentan etiquetas con información, las cuales se indican a continuación:

• Tuberías

[L: 28.70m] [C: 6.60lps] [V: 0.84mps] [ID: 13] [D: 100mm]

Ilustración 50 Etiquetas de Tubería

Donde:

L: Longitud del tramo

C: Caudal que conduce el tramo

V: Velocidad del fluido dentro de la tubería

ID: Identificativo de la tubería

D: Diámetro de la tubería

• Conexiones

1 +	—— Identificativo de la Conexión ——— Altura Piezométrica
2353.051 •	
47.21 •	——Presión en la Conexión

Ilustración 51 Bloque de parámetros en Conexiones

Opción que permite modificar las características de la red en la ventana de Configuración. Redes > Editar > Seleccione cualquier elemento de la red > Configure > Aceptar

Suprime todo el sistema y sus elementos.

Redes > Eliminar > Seleccione un elemento de la red > Sí

Configurar Parámetros

Configure todas las propiedades de la red. Está divido en 5 categorías, Propiedades Hidráulicas, Tiempo, Reacciones, Calidad y Energía.

FormularioParaLaConfigu	uracionDeOpciones				– 🗆 X
Propiedades Hidráulicas		Tiempo			
Propiedad	Valor	Propiedad	Hrs:Min	Calidad	
Unidades de Caudal	LPS ~	Duración Total	0	Propiedad	Valor
Ecuación de Pérdidas	D-W ~	Intervalo Calculo Hidraulico	1:00	Parametro	NONE
Peso Específico	1.000	Intervalo Cálculo Calidad	0:05	Unidades Densidad	mg/L v
Viscosidad Relativa	1.000	Intervalo Patrones	1:00	Difusividad Relativa	1.000
Iteraciones Máx.	40	Tiempo de Inicio Patrón	0.00	Nodo Procedencia	~
Precisión	0.001	Intervalo Informe	1.00	Tolerancia	0.010 🜩
Sistema No Equilibrado		Tiempo Inicio Informe	1:00	Energia	
Cisteria No Equilibriduo		nempo micio morme	1.00	Propiedad	Valor
Patrón Predeterminado	~	Tiempo Inicio Reloj	12 am	Rend. Bomba(%)	75.00
Factor Demanda	1.000	Estadistica	NONE ~	Precio Energia/Kwh	0.00
Exponente Emisores	0.500	Reacciones		Patron de Precios	~
Informe de Estado	NONE ~	Propiedad	Valor	Término de Potencia	0.00
CHECKFREQ	2.000	Orden de Reacción de Flujo	1.000		
MAXCHECK	10.000	Orden de Reacción de Pared	FIRST ~		
DAMPLIMIT	0.000	Coef. Global Flujo	0.000		
Diametro Por Material	1700 - PREV	Coef. Global Pared	0.000		
Diametro For Matchar	200.000	Concentracion Límite	0.000 🖨		
		Coef. Correlación Pared	0.000		
Coefficiente de Rogosidad:	0.001000			Assets	Canadar
Longitud Esquemática	1000.000 🚖			Aceptar	Cancelar

Ilustración 52 Formulario: Configuración de Parámetros

Propiedades Hidráulicas

Unidades de Caudal. Unidades en las cuales serán expresados los caudales en las conexiones y los caudales de paso por las tuberías. Si se eligen litros o metros cúbicos, entonces las restantes magnitudes serás expresadas en unidades métricas. Si se eligen galones, pies cúbicos o pies acres, entonces las restantes magnitudes se expresarán en unidades convencionales US. Hay que tener cuidado al cambiar de unidades, puesto que ello puede afectar al resto de los datos del proyecto.

CFS – Pies Cúbico por Segundo GMP – Galones Por Minuto MGD –Millones de Galones por Día IMGD – MGD Imperiales AFD – Acres Pie por Día LPS – Litros Por Segundo LPM – Litros Por Minuto MLD – Mega Litros por Día CMH – Metro Cúbico por Hora

Ecuación de Pérdidas. Ecuación utilizada para calcular las pérdidas de carga en función del caudal de paso por las tuberías. Las opciones son tres: H-W Hazen-Williams D-W Darcy-Weisbach C-M Chezy-Manning

Peso específico. Relación entre la densidad del fluido que circula por la red y la del agua a 4°C (adimensional)

Viscosidad Relativa. Relación entre la viscosidad cinemática del fluido y la del agua a 20°C.

Iteraciones Máx. Número Máximo de Iteraciones permitidas para resolver las ecuaciones no lineales que gobiernan al sistema hidráulico, en cualquier instante de la simulación. Se sugiere el valor de 40.

Precisión. Criterio de convergencia utilizado para saber que se ha encontrado una solución para el conjunto de ecuaciones no lineales que gobiernan el sistema. Las iteraciones finalizan cuando la suma de todas las variaciones de caudales dividida por la suma de todos los caudales circulantes es menor que este número. Se sugiere el valor 0,001.

Sistema No Equilibrado. Acción a aplicar si no se encuentra una solución en el número máximo de iteraciones permitido. Las opciones son Parar para detener la simulación en este punto, o Continuar para realizar 10 iteraciones más, durante las cuales no se permitirá el cambio de estado de las líneas, en un intento de obtener la convergencia.

Patrón Predeterminado. Identificativo ID de la curva de modulación aplicable a las demandas, en aquellos nudos en que ésta no se haya especificado. Si no se declara una curva de modulación por defecto, la demanda permanecerá constante en dichos nudos.

Factor Demanda. Factor global aplicable a todas las demandas en los nudos, con el fin de aumentar o disminuir el consumo total de la red. P. ej. un factor 2,0 duplicaría todas las demandas, un factor 0,5 las dividiría por la mitad, y un factor 1,0 las dejaría igual.

Exponente Emisores. Exponente al cual se elevará la presión, para calcular el caudal saliente por los emisores. El exponente recomendado en los manuales para toberas y rociadores es de 0,5. En el caso de representar una fuga puede ser distinto.

Informe de Estado. Especifica el volumen de información a incluir en el informe emitido tras finalizar una simulación. Las opciones son:

- 1) No (no se emite ningún informe)
- 2) Sí (informe normal lista todos los cambios habidos en el estado de las líneas durante la simulación)
- 3) Todo (informe completo contiene lo mismo que el informe normal, más los errores de convergencia para cada iteración realizada, dentro de cada instante de la simulación)

El informe completo se utiliza únicamente para depuración

CHECKFREQ. La frecuencia de chequeo establece el número de iteraciones hidráulicas a realizar antes de comprobar de nuevo el estado de bombas, válvulas de retencion, válvulas limitadoras de caudal y tuberías conectadas a depósitos. El valor por defecto es 2, lo que significa que la comprobación se realiza una vez sí y otra no. Un valor igual al máximo de iteraciones, significa que la comprobación no se realiza hasta que el sistema haya convergido. (cuando ocurre un cambio de estado las iteraciones continúan, ya que el sistema puede quedar desequilibrado). La frecuencia de chequeo de las válvulas reductoras (PRV) y sostenedoras (PSV) de presión es determinada por la opción Limite de Relajación.

MAXCHECK. Es el número de iteraciones a partir del cual deja de realizarse la verificación periódica del estado de bombas, válvulas de retención, válvulas limitadoras de caudal y tuberías conectadas a depósitos. Una vez superadas, la comprobación se realizará de nuevo solo cuando se alcance la convergencia. El valor por defecto es 10, lo que significa que después de 10 iteraciones, en lugar de comprobar el estado tras el número de iteraciones indicado por Frec. Chequeo de iteraciones, será comprobado únicamente cuando se alcance la convergencia.

DAMPLIMIT. El límite de relajación, es la precisión a partir de la cual comenzarán a aplicarse técnicas de relajación y a verificarse el estado de las válvulas reductoras (PRV) y sostenedoras de presión (PSV). La relajación consiste en reducir los cambios de caudal propuestos en cada iteración al 60 % del valor que les correspondería en una iteración normal.

El valor por defecto es 0, lo que presupone no aplicar técnicas de relajación y verificar el estado de las válvulas de control de la presión en cada iteración. La relajación puede ser necesaria en redes con problemas de convergencia, en cuyo caso se sugiere pone como valor límite 0,01.

🕭 TOM PVC-O 500 S1 PN 16 [200 mm] X Selección ⊕ · Amanco + Otek + Valtic - Molecor - TOM PVC-0 500 PN 12.5 PN 20 PN 25 🗄 Durman . Ductiline E Sin Marca Bludren Detalles Molecor Marca: TOM PVC-O 500 Material: Serie: S1 Espesor: PN 16 200 mm (20 cm) Diametro: Y Coef. Rugosidad: 0.009000000 + Aceptar Cancelar

Diámetro por material. Se enlistan los diferentes tipos de materiales que puede tener una tubería.

Ilustración 53 Formulario para selección de material

Selección: Lista de Materiales disponibles para asignar a una tubería, clasificados de acuerdo a su RD o PN Detalles Marca: Marca Comercial de la Tubería Material: Nombre del material seleccionado Serie: Si el material está clasificado por serie, se tendrá este grupo Espesor: Espesor de pared de la tubería, de acuerdo a RD o PN Diámetro: Lista de los diámetros comerciales disponibles de dicho material Coef. Rugosidad: Valor de coeficiente de Pérdidas por Fricción del material

Diámetro Estático. Diámetro base con el que contará cada tubería, se puede activar o desactivar esta opción.

Coeficiente de Rugosidad. Factor para calcular las pérdidas por fricción de acuerdo al tipo de material de la tubería y a la ecuación de pérdidas seleccionada.

Longitudes Esquemáticas de Tuberías. Cuando se activa esta opción, la longitud de las tuberías es solo representativa en el momento en que éstas son añadidas o trazadas.

Tiempo.

Duración Total. Duración total de la simulación, en horas. Un valor 0 significa un cálculo en régimen permanente (o para un instante dado).

Intervalo Cálculo Hidráulico. Intervalo de tiempo entre dos cálculos sucesivos del estado de equilibrio de la red. El valor por defecto es 1 hora.

Intervalo Cálculo Calidad. Intervalo de tiempo utilizado para hacer avanzar la sustancia transportada en un modelo de calidad. El valor por defecto es 5 minutos (0:05 horas).

Intervalo Patrones. Intervalo de tiempo utilizado para caracterizar todas las curvas de modulación. El valor por defecto es 1 hora.

Tiempo de Inicio Patrón. Hora común para todas las curvas de modulación, a partir de la cual se inicia la simulación (p. ej. un valor 2 significaría que la simulación arranca con el coeficiente de las curvas de modulación correspondiente a la hora 2). El valor por defecto es 0.

Intervalo Informe. Intervalo de tiempo entre los instantes de cálculo para los cuales se mostrarán los resultados al usuario. El valor por defecto es 1 hora.

Tiempo Inicio Informe. Hora de la simulación a partir de la cual se comenzarán a mostrar los resultados al usuario. El valor por defecto es 0.

Tiempo Inicio Reloj. Hora real a la cual comienza la simulación (p. ej. 7:30 AM, 10:00 PM). El valor por defecto es 12:00 AM (medianoche).

Estadística. Procedimiento estadístico empleado para sintetizar los resultados de una simulación en periodo extendido. Las opciones son:

- Ninguna (se muestran los resultados correspondientes a cada instante)
- Medias (se muestran los valores medios de los resultados)
- Mínimos (se muestra el valor mínimo de los resultados)

- Máximos (se muestra el valor máximo de los resultados)
- Rangos (se muestra la diferencia entre el valor máximo y el valor mínimo de los resultados).

Las funciones estadísticas se aplican sobre los resultados de los todos los nudos y líneas, entre la Hora de Inicio de los Resultados y la hora final de la simulación.

Reacciones.

Orden de Reacción de Flujo. Potencia a la cual hay que elevar la concentración para determinar la velocidad de reacción en el medio. Un valor 1 corresponde a una reacción de primer orden, un 2 a una reacción de segundo orden, etc. Utilizar cualquier valor negativo para una cinética de Michaelis-Menton. Si no se especifica un coeficiente de reacción en el medio a nivel global o de tubería, esta opción será ignorada.

Orden de Reacción de Pared. Potencia a la cual hay que elevar la concentración para determinar la velocidad de reacción en la pared. Las opciones son Uno (1) para reacciones de primer orden, o Cero (0) para velocidades de reacción constante. Si no se especifica un coeficiente de reacción en la pared a nivel global o de tubería, esta opción será ignorada.

Coef. Global Flujo. Coeficiente de velocidad de reacción en el medio (Kb) asignado por defecto a todas las tuberías. Este valor puede cambiarse para algunas tuberías, editándolo para ellas específicamente. Un valor positivo implica el crecimiento de la concentración, y un valor negativo su decrecimiento. Un valor 0 implica que no hay reacción. Las unidades serán las empleadas para expresar la concentración, elevadas a la potencia (1-n), y divididas por días, donde n expresa el orden de la reacción en el medio.

Coef. Global Pared. Coeficiente de velocidad de reacción en la pared (Kw) asignado por defecto a todas las tuberías. Este valor puede cambiarse para algunas tuberías, editándolo para ellas específicamente. Un valor positivo implica el crecimiento de la concentración, y un valor negativo su decrecimiento. Un valor 0 implica que no hay reacción. Las unidades serán m/día (SI) o pies/día (US) para reacciones de primer orden y masa/m2 /día (SI) o masa/pies2 /día (US) para reacciones de orden cero.

Concentración Límite. Concentración máxima que puede alcanzar una sustancia cuyo contenido crece con el tiempo, o concentración mínima si ésta decrece. Las velocidades de reacción en el medio serán proporcionales a la diferencia entre la concentración actual y el valor límite. Para más detalle ver el epígrafe Reacciones en el seno del agua del Apartado 3.4. Introducir un 0 si no se aplica.

Coef. Correlación Pared. Factor que correlaciona el coeficiente de reacción en la pared con la rugosidad de la tubería. Para más detalles consultar el epígrafe Reacciones en la Pared del Apartado 3.4. Introducir un 0 si no se aplica. *Calidad.*

Parámetro. Tipo de análisis de calidad a realizar, se cuenta con las siguientes opciones:

- Ninguno (no se realiza ningún análisis de calidad)
- Sust. Química (calcula la concentración de una sustancia química, reactiva o no)

• Proced. (realiza un seguimiento del porcentaje de agua procedente de un nudo dado, que llega a cada punto de la red)

- Tiempo Perm. (calcula el tiempo de permanencia del agua en la red)
- Sedimentos (decantación y re-suspensión de partículas)

Unidad Densidad. Unidades de masa empleadas para expresar la concentración de un contaminante. Las opciones son mg/l o μ g/l. Las unidades empleadas para el cálculo de Procedencias son porcentajes y para los Tiempos de Permanencia horas, estando ambas fijadas.

Difusividad Relativa. Valor del coef. de difusión molecular de la sustancia en estudio, referida al coef. de difusión del cloro a 20°C (0,00112 pies2 /día). Un valor 2 indica que la sustancia se difunde dos veces más rápido que el cloro, un valor 0,5 que se difunde a velocidad mitad, etc. Sólo se aplica al modelar la transferencia de masa en las reacciones con las paredes de las tuberías. Introducir un 0 si se van a ignorar los fenómenos de transferencia de masa.

Nodo Procedencia. Identificativo ID del nudo del cual procede el flujo a seguir. Se aplica solamente en el análisis de procedencias.

Tolerancia. El cambio más pequeño del parámetro de calidad analizado, que provocará la creación de un nuevo segmento en la tubería. Un valor típico es 0,01 para contaminantes cuya concentración se mide en mg/l, así como para el cálculo de tiempos de permanencia y procedencias.

Energía.

Rend. Bomba (%). Rendimiento de la bomba por defecto.

Precio Energía/Kwh. Precio de la energía por kWh. Las unidades monetarias no se indican explícitamente.

Patrones de Precios. Identificativo ID del patrón utilizado para representar las variaciones del precio de la energía con el tiempo. Dejar en blanco si no se aplica.

Término de Potencia. Coste de utilización de la potencia, por Kw (corresponde al coste del término de potencia, el cual se evalúa en función de la potencia máxima demandada.

Redes > Configurar Parámetros > Configurar > Aceptar

Al terminar la configuración necesaria y dar clic en Aceptar, emergerá una ventana nueva:

Ilustración 54 Confirmar cambios en el sistema

Al seleccionar la opción Sí, los cambios se efectuarán en el sistema reconocido previamente, en cambio, si se selecciona la opción No, los cambios solo se realizarán en aquellos elementos hidráulicos nuevos, es decir, en los elementos que se inserten a partir de este momento.

Importa archivo con la extensión .Net directamente de Epanet

Redes > Importar > Seleccione un elemento de la red > Guardar Archivo > Guardar

Exporta archivo con la extensión. Net, directamente de AutoCAD a Epanet

 $Redes > Exportar > Seleccione \ un \ elemento \ de \ la \ red > Guardar \ Archivo > Guardar$

4.3.2 Elementos Hidráulicos

El grupo Elementos Hidráulicos está dividido en seis cajas de comandos:

Ilustración 55 Bloque Elementos Hidráulicos

4.3.2.1 Conexiones

El subgrupo Conexiones contiene las opciones Indicar Rasante, Calcular Rasante, Numerar Conexiones, Renumerar Conexiones, Configurar Parámetros, Coeficiente de Emisor, Indicar Demanda, Insertar conexión, Convertir, Localizar y Eliminar.

Ilustración 56 Comandos del Menú Conexiones

Indicar rasante

Nivel del terreno donde se proyectará el nodo. El ingreso de datos es uno a uno.

Elementos hidráulicos > Conexiones > Indicar rasante > Indicar profundidad de tubería > Seleccione conexión > Indique la rasante > Enter

Calcular rasante

Permite generar todas las rasantes a partir de elementos 3D (triangulación).

Elementos hidráulicos > Conexiones > Calcular rasante > Seleccione cualquier elemento de la red > Seleccione elementos Face 3D > Indicar profundidad de tubería > Enter

Numerar Conexiones

HTP realiza una numeración inicial al configurar el sistema, si desea cambiarla, utilizar el siguiente comando.

Elementos hidráulicos > Conexiones > Numerar Conexiones > Seleccione conexión inicial > Indique el número inicial > Enter

Si se desea cambiar la numeración realizada previamente, se puede editar colocando el identificativo alfanumérico de su preferencia.

Elementos Hidráulicos > Conexiones > Renumerar Conexiones > Seleccione Conexión > Indique nuevo identificador de Conexión > Enter

Configurar Parámetros

Permite configurar las características de la Conexión.

Elementos Hidráulicos > Conexiones > Configurar Parámetros > Seleccione Conexión

😻 Configurar Conexión [2]			_	□ ×
Configuración de Conexión Descripción				
Características		Demanda		
Elevación de Terreno(m):	0.00	Categoría de Demanda:	0	
Profundidad de la Instalación(m):	0.00	Patría da Dassada		
*Elevación de la Tuberia(m):	0.00	Patron de Demanda:	I	~
Demanda Base(Ips):	0.00	Resultados		
Calidad Inicial:	0	Altura Total(m):	0.00	
Fuente de Calidad		Presión:	0.00	
		Demanda Actual (Ips):	0.00	
		Calidad:	0.00	
			Aceptar	Cancelar

Ilustración 57 Formulario Configurar Conexión

• Descripción

Permite colocar una descripción acerca de esa conexión.

• Elevación de Terreno

Rasante de la conexión respecto a un nivel de referencia común para toda la red. Es una propiedad requerida. Esta elevación sólo se utiliza para calcular la presión en la conexión.

• Profundidad de la Instalación

Profundidad a la que estará instalada la tubería.

• Elevación de la tubería

Elevación de la tubería, cuyo resultado es la Elevación del Terreno menos la Profundidad de Instalación.

• Demanda base

Consumo medio o nominal en la conexión

• Calidad Inicial

Valor del parámetro de calidad del agua en la conexión al comienzo del cálculo hidráulico. Al no realizar un modelo de calidad de agua dejar en blanco.

• Fuente de Calidad

Determina la calidad del agua que entra a la red por esta conexión. Al dar clic en el botón de puntos suspensivos, se abrirá el Formulario Editor de Fuentes, en el cual, es posible configurar las características del fluido.

• Patrón de demanda

Identificativo ID del Patrón de Demanda, empleada para caracterizar la variación de la demanda en el tiempo.

• Categoría de Demanda

Número de tipos de usuario distintos considerados en la conexión. Dando clic en el botón de puntos suspensivos se abre el Editor de Demandas, la cual permite asignar su demanda base y sus patrones.

• Altura Total

Es un dato de salida. El software HTP calcula la altura total como resultado de la suma de la Elevación de Terreno + Presión en la conexión.

• Presión

Dato de salida, hace referencia al cálculo de presión, valor obtenido de la diferencia entre la Altura Total y Elevación de Terreno.

• Demanda Actual

Permite conocer cuál es la demanda que posee la conexión al momento del cálculo hidráulico. Es un dato de salida y puede variar en función de los patrones de demanda ingresados.

• Calidad

Dato de salida, muestra la evolución del cloro.

Elementos Hidráulicos > Conexiones > Coeficiente de Emisor > Seleccione Conexión > Ingrese el Coeficiente > Enter

Indica la demanda puntual en la conexión seleccionada del sistema.

Elementos hidráulicos > Conexiones > Indicar Demanda > Seleccione una conexión del sistema > Indique la demanda puntual > Enter

Coeficiente de Emisor

Indica un caudal de salida en la conexión, que bien podría ser, una fuga localizada, un orificio, o un aspersor.

Elementos hidráulicos > Conexiones > Coeficiente de Emisor > Seleccione una conexión del sistema > Indique el coeficiente de emisor > Enter

Insertar Conexión

Coloca una conexión en cualquier ubicación del sistema. En el sistema se podrá observar la conexión añadida, la rasante (que en principio está en ceros) y el número de nodo siendo éstos modificables.

Elementos hidráulicos > Conexiones > Insertar Conexión > Seleccione un elemento del sistema > Indique el punto de inserción > Enter

Convertir

Convierte cualquier elemento físico compatible del sistema, es decir, a embalse o depósito, a una conexión.

Elementos hidráulicos > Conexiones > Convertir > Seleccione un elemento > Enter

Localizar

Ubica una conexión en el sistema.

Elementos hidráulicos > Conexiones > Localizar> Seleccione cualquier elemento de la red > Indique el identificador de la conexión > Enter

Elimina conexiones en el sistema.

Elementos hidráulicos > Conexiones > Eliminar> Seleccione la conexión que desea eliminar > Enter

4.3.2.2 Tuberías

El subgrupo Tuberías contiene las opciones Editar Numeración, Renumerar Tuberías, Configurar Parámetros, Insertar, Longitud, Convertir y Eliminar.

Ilustración 58 Comandos del Menú Tuberías

Si se desea cambiar la numeración realizada previamente, se puede editar colocando el identificativo alfanumérico de su preferencia.

Elementos Hidráulicos > Tuberías > Editar Numeración > Seleccione la Tubería > Indique nuevo identificador > Enter

Renumerar Tuberías

HTP realiza una numeración inicial al configurar el sistema, si desea cambiarla, utilizar el Elementos hidráulicos > Tuberías > Renumerar Tuberías > Seleccione tubería inicial > Indique el número inicial > Enter

Configurar Parámetros

Permite configurar las características de la Tubería. Elementos Hidráulicos > Tuberías > Configurar Parámetros > Seleccione Tubería

Configuraciór	-		>		
Descripción					
Propiedades		Resultados			
*Longitud:	809.041	Caudal:	0		
Material	1700 - PRFV - Otek	Velocidad:	0		
*Diametro:	200.000	Perdidas Unitarias:	0		
*Rugosidad:	0.00150	Factor Fricción:	0		
Coef. Perdidas:	0.000	Vel. Reacción:	0		
Estado Inicial:	OPEN ~	Calidad:	0		_
Coef. Flujo:	0.000	Estado:			
C (D)	0.000	Acentar		Canon	lar

Ilustración 59 Formulario Configuración de Tubería

• Descripción

Permite colocar una descripción acerca de esa tubería.

• Longitud

Indica la longitud que tiene la tubería, si esta desactivada la opción de Longitud Esquemática del Menú Redes, esta será la longitud real del entorno de AutoCAD, por el contrario, si se encuentra activada esta longitud podrá ser ingresada de manera manual y no estará representada en una escala real.

• Diámetro

Diámetro de la tubería

• Rugosidad

Coeficiente de rugosidad de la tubería. Es adimensional para la fórmula de Hazen-Williams o de Chezy-Manning, y tiene unidades de mm para la fórmula de Darcy-Weisbach

• Coeficiente de Pérdidas

Coeficiente de pérdidas menores adimensional asociado con los accesorios que se encuentran en el tramo, el cual se puede digitar directamente si se conoce este valor, sin embargo, al dar clic en el botón de opciones, se podrá calcular este coeficiente, con base a la selección de accesorios en el tramo.

Perdidas ivientores	_			^
Elemento	Factor	Can	tidad	^
General	0.00	0	÷	
Valvula de globo, completamente abierta	10.00	0	÷	
Valvula en ángulo, completamente abierta	5.00 🚖	0	-	
Válvula check completamente abierta	2.50	0	* *	
Válvula de compuerta, completamente abierta	0.20	0	•	
Válvula de compuerta, con 3/4 de apertura	1.15	0	* *	
Válvula de compuerta, con 1/2 de apertura	5.60 🜲	0	* *	
Válvula de compuerta, con 1/4 de apertura	24.00	0	* *	
Codo de radio corto (r/d = +- 1)	0.90	0	÷	
Codo de radio mediano	0.80	0	÷	
Codo de gran radio (r/d = +- 1.5)	0.60	0	* *	
Codo de 45°	0.40	0	÷	
Retorno (curva en U)	2.20	0	* *	
Tee en sentido recto	0.30	0	÷	
Tee a través de la salida lateral	1.80	0	÷	
Unión	0.30	0	÷]
Yee de 45°, en sentido recto	0.30	0	-]
Yee de 45°, salida lateral	0.80	0	÷]
Entrada recta a tope	0.50	0	÷]
Entrada con boca acampanada	0.10	0	÷	
Entrada con tubo reentrante	0.90	0	÷	¥
Entrada con tubo reentrante Total: 0.	0.90 III	r	Cancela	r

Ilustración 60 Formulario para obtener coeficiente de pérdidas menores en tubería

Elemento: Lista de accesorios disponibles en un tramo.

Factor: Valor del factor de pérdida por accesorio.

Cantidad: Número de piezas de cada accesorio que se encuentran dentro del tramo.

Total: Cálculo del coeficiente de pérdidas por accesorios.

• Estado Inicial

Especifica si la tubería se encuentra inicialmente Abierta, Cerrada o contiene una Válv. de Retención. En este último caso, la dirección permitida del flujo será de la Conexión Inicial a la Final.

• Coeficiente de Flujo

Coeficiente de reacción en el medio para la tubería

• Coeficiente de Pared

Coeficiente de reacción en la pared de la tubería

• Caudal

Valor del caudal que está circulando por el tramo de tubería analizado. Es un dato de salida.

• Velocidad

Velocidad del fluido en el tramo de tubería. Es obtenida a partir de la relación entre el caudal y el área de la tubería. Es un dato de salida.

• Pérdida Unitaria

Se puede definir como la pendiente de la línea de energía. Es conocida como el gradiente hidráulico. Es un dato de salida.

• Factor Fricción

Factor de fricción del tramo analizado. Es un valor de salida.

• Velocidad de Reacción

Velocidad de reacción entre el seno del fluido y la sustancia desinfectante.

• Calidad

Valores de concentración del cloro a través de la tubería. Es un dato de salida.

• Estado

Después de realizar el cálculo hidráulico, se refleja si el tramo de tubería analizado, se encuentra abierto o cerrado. Esta propiedad solo se puede modificar en el Estado Inicial de la tubería.

Coloca una tubería para unir dos elementos hidráulicos. En el sistema se podrá observar la tubería añadida, la longitud y el ID consecutivo de la numeración.

Elementos hidráulicos > Tubería > Insertar > Seleccione un elemento inicial > Seleccione un elemento final > Enter

Longitud

Este comando solo estará disponible cuando la opción de Longitudes Esquemáticas se encuentre activada. Consiste en ingresar la longitud esquemática que se desea tener en ese tramo de tubería.

Elementos hidráulicos > Tubería > Longitud > Seleccione una Tubería > Ingrese el valor de Longitud > Enter

Convierte cualquier elemento físico compatible del sistema, es decir, bomba o válvula, a una tubería.

Elementos hidráulicos > Tubería > Convertir > Seleccione un elemento > Enter

Elimina Tuberías en el sistema.

Elementos hidráulicos > Tuberías > Eliminar> Seleccione la Tubería que desea eliminar > Enter

4.3.2.3 Embalses

El subgrupo Embalses contiene las opciones Insertar Embalse, Configurar, Convertir y Eliminar.

Ilustración 61 Comandos del Menú Embalses

Insertar Embalse

Inserta un Embalse en cualquier punto.

Elementos hidráulicos > Embalses > Insertar Embalse > Seleccione un elemento del sistema > Seleccione el punto de inserción del Embalse > Enter

🛃 Configurar

Permite configurar las características de los Embalses.

Elementos Hidráulicos > Embalses > Configurar > Seleccione Embalse

😻 Embalse				-		×
Propiedades						
Descripcion						
*Atura Total: (msnm)	0.00	Cota Piezométrica (m):	0			
Patrón de Altura:	Seleccionar ~	Presión (m):	0			
Fuente de Calidad		Caudal Suministrado (m3/s):	0			
Calidad Inicial	0.00	Calidad:	0			
			Acard	76	Carro	lar
			Acept	ar	Cance	ar

• Descripción

Permite colocar una descripción acerca de este embalse.

• Altura total

Es la altura, cota o nivel piezométrico que tiene el embalse

• Patrón de Altura

Identificado ID del Patrón de Altura, empleado para caracterizar la variación de la altura en el tiempo.

• Caudal Suministrado

Dato de salida que indica cuál es el caudal neto que está saliendo del embalse, es decir, el caudal que está suministrando a la red.

Calidad Inicial

Valor del parámetro de calidad del agua en el Embalse al comienzo del cálculo hidráulico. Al no realizar un modelo de calidad de agua dejar en blanco.

• Cota Piezométrica

Dato de salida, se refiere a la altura piezométrica (elevación + presión) del agua en el embalse.

• Presión

Dato de salida, hace referencia al cálculo de presión, valor obtenido de la diferencia entre la Altura del Tanque y Elevación de Terreno.

• Calidad

Valores de concentración del cloro a través de la tubería. Es un dato de salida.

• Fuente de Calidad

Determina la calidad del agua que entra a la red por el Embalse. Al dar clic en el botón de puntos suspensivos, se abrirá el Formulario Editor de Fuentes, en el cual, es posible configurar las características del fluido.

Convierte cualquier elemento físico compatible del sistema, es decir, conexión o depósito, a un embalse.

Elementos hidráulicos > Embalse > Convertir > Seleccione un elemento > Enter

Elimina Embalses en el sistema.

Elementos hidráulicos > Embalses > Eliminar> Seleccione el Embalse que desea eliminar > Enter

4.3.2.4 Depósito

El subgrupo Depósito contiene las opciones Insertar Depósito, Configurar, Convertir y

Eliminar.

Ilustración 63 Comandos del Menú Depósito

Insertar Depósito

Inserta un Depósito en cualquier punto.

Elementos hidráulicos > Depósito > Insertar Depósito > Seleccione un elemento del sistema > Seleccione el punto de inserción del Depósito > Enter

Permite configurar las características de los Depósitos.

Elementos Hidráulicos > Depósito > Configurar > Seleccione el Depósito

Ilustración 64 Comandos del Menú Depósito

• Descripción

Permite colocar una descripción acerca de este depósito

• Elevación del Depósito

Elevación del Depósito respecto a un nivel de referencia común para toda la red. Es una propiedad requerida.

• Nivel Inicial

Establece el nivel piezómetrico dentro del Depósito con el cual se desea comenzar la simulación del modelo. Se debe tener en cuenta que el valor del nivel inicial toma como cero el fondo o solera del depósito. Además, el nivel inicial debe ser un valor comprendido entre el nivel máximo y mínimo.

• Nivel Mínimo

Indica el nivel mínimo con el cual va a operar el Depósito. Cuando el depósito, debido a su operación llega a este nivel, se detiene el suministro de agua hacia la red, por lo tanto, se visualizan presiones negativas en las conexiones, lo cual indica la ausencia de agua dentro de las tuberías. Se debe tener en cuenta que el valor del nivel mínimo toma como cero el fondo del tanque, y que la altura de éste con respecto al nivel del mar no interfiere.

• Nivel Máximo

Establece el nivel máximo que puede alcanzar el agua dentro del Depósito. El valor del nivel máximo toma como cero el fondo del depósito, por lo tanto, no importa la altura con respecto al nivel del mar que éste posea. el nivel máximo debe ser la máxima capacidad del agua dentro del depósito, mientras que el nivel mínimo debe estar por debajo tanto del máximo como del inicial y, así mismo, el inicial no debe sobrepasar el máximo.

• Diámetro del Depósito

Indica el diámetro del Depósito, el Software HTP toma de forma predeterminado que el Depósito tiene forma cilíndrica, por ello solo basta con introducir el diámetro. Sin embargo, si se requiere modelar un Depósito de sección cuadrada, se debe buscar un diámetro equivalente del área que ocupa dicha sección, mientras que para depósitos con secciones variadas será necesario construir una curva de modelación que relacionen la profundidad con el volumen.

• Volumen Mínimo

Indica el volumen mínimo con el cual se puede realizar la simulación del modelo. El volumen mínimo es de utilidad para Depósitos con secciones que varían en función de la altura

• Curva de Volumen

Permite modelar Depósitos con secciones variables en función de la altura. Se debe introducir el nombre de la curva que relaciona el volumen almacenado con respecto a la altura del agua dentro del Depósito. Es necesario tener en cuenta que, para poder referenciar una curva de volumen, se debe primero construir con los valores ya calculados, para luego asignarle una identificación ID a la curva y lograr citarla en la casilla Curva de volumen. Si no se especifica ningún tipo de curva de volumen, se asume que el modelo del tanque es de sección circular constante, es decir, un tanque totalmente cilíndrico.

• Modelo de Mezcla

Representa cómo es la interacción entre el agua ya almacenada y el agua entrante, se cuentan con cuatro opciones de mezclas, mezclado completo, mezclado en dos compartimientos, FIFO (*First In First Out*) y LIFO (*Lasto In First Out*)

• Fracción de Mezcla

Establece la fracción de volumen que se desea utilizar como primer compartimiento, con relación al volumen total del Depósito. Esta propiedad sólo aplica al seleccionarse como modelo Mezcla de dos comportamientos. Si el tipo de modelo de mezcla es diferente al mencionado, se debe dejar en blanco.

• Coeficiente de Reacción

Hace referencia al coeficiente de velocidad de reacción en el seno del fluido (agua). La reacción del agua con sustancias como el cloro se puede representar por medio de ecuaciones cinéticas polinómicas (R= Kb x Cn). El valor a introducir como coeficiente de flujo o coeficiente de reacción (Kb) se obtiene al conocer los valores de concentración de cloro presentes en el agua en distintos intervalos de tiempo.

• Caudal Entrante

Caudal que suministra el Depósito a la red. Dato de salida que puede varias si existe una curva de patrón de consumo.

• Cota

Identifica cuál es la cota asignada a la solera del Depósito (fondo del Depósito). Se debe tener en cuenta que es un dato de salida.

• Presión

Dato de salida. Identifica la presión hidrostática del fluido dentro del Depósito.

Calidad Inicial

Valor del parámetro de calidad del agua en el Depósito al comienzo del cálculo hidráulico. Al no realizar un modelo de calidad de agua dejar en blanco.

• Fuente de Calidad

Determina la calidad del agua que entra a la red por el Embalse. Al dar clic en el botón de puntos suspensivos, se abrirá el Formulario Editor de Fuentes, en el cual, es posible configurar las características del fluido.

• Calidad Final

Valores de concentración del cloro a través de la tubería. Es un dato de salida.

Convierte cualquier elemento físico compatible del sistema, es decir, conexión o embalse, a un depósito.

Elementos hidráulicos > Depósito > Convertir > Seleccione un elemento > Enter

Elimina Depósito en el sistema.

Elementos hidráulicos > Depósitos > Eliminar> Seleccione el Depósito que desea eliminar > Enter

4.3.2.5 Válvulas

El subgrupo Válvulas contiene las opciones Insertar Válvula, Configurar, Convertir y Eliminar.

Ilustración 65 Comandos del Menú Válvulas

Opción que permite introducir una válvula en el sistema.

Elementos Hidráulicos > Válvulas > Insertar > Seleccione el elemento inicial > Seleccione el elemento final

Configuración General

Permite configurar las características de las válvulas.

Elementos Hidráulicos > Válvulas > Configuración General > Seleccione la Válvula

😻 Válvula [5]		
Descripción		
1		
*Tipo de Válvula		
PRV		~
		1
*Diametro: 200		÷
Coeficientes		
Coef. de Perdidas:	0.000	*
*Consigna:	0.000	
Consigna.	0.000	•
Sentido de Flujo:	2 → 4	~
Estado de la Válvula:	NONE	~
Caudal (m3/s):	0	
Velocidad (m/s):	0	
Perdidas (m):	0	
Calidad:	0	
Estado	NONE	
	Aceptar	Cancelar

Ilustración 66 Formulario para configurar válvulas

• Descripción

Permite colocar una descripción acerca de la válvula

• Tipo de válvula

En el software HTP se exponen 6 tipos de válvulas, cada una de ellas fue descrita anteriormente en el apartado de Elementos-Válvulas, sin embargo, su abreviatura se presenta en la siguiente tabla:

Tipo de Válvula				
PRV	Válvula reductora de presión			
PSV	Válvula sostenedora de presión			
PBV	Válvula de rotura de carga			
FCV	Válvula controladora de caudal			
TCV	Válvula reguladora por estrangulación			
GPV	Válvula de propósito general			

Tabla 11 Tipos de Válvula que maneja el Software HTP

• Diámetro

Valor requerido para la simulación de un modelo hidráulico. En esta casilla se debe consignar el diámetro útil de la válvula a utilizar en el modelo.

• Coeficiente de pérdidas

Coeficiente adimensional de pérdidas menores que se aplica cuando la válvula está completamente abierta.

• Consigna

Es una propiedad obligatoria para modelar cualquier tipo de válvula. La consigna es un valor que depende del tipo de válvula a utilizar. En la siguiente tabla, se muestra cuál debe ser el valor de consigna en el sistema internacional de unidades para los tipos de válvula descritos anteriormente.

Tipo de Válvula	Consigna	Unidades de Consigna
Válvula reductora de presión (PRV)	Presión requerida aguas abajo de la válvula	Metros (m)
Válvula sostenedora de presión (PSV)	Presión requerida aguas arriba de la válvula	Metros (m)
Válvula de rotura de carga (PBV)	Presión de caída requerida entre el nudo aguas arriba y aguas debajo de la válvula	Metros (m)
Válvula limitadora o controladora de caudal (FCV)	Caudal a limitar o restringir en el tramo donde se encuentra instalada la válvula	Litros por segundo (LPS)
Válvula reguladora por estrangulación (TCV)	Coeficiente o constante de accesorio	Adimensional
Válvula de propósito general (GPV)	Nombre o ID de la curva característica que relaciona la perdida de energía vs caudal	Nombre o ID de la curva característica de pérdidas

Tabla 12 Consigna de los tipos de Válvula

• Sentido de flujo

Propiedad que indica la dirección del flujo, es decir, cuál es su conexión inicial y final; desplegando la lista podemos invertir el sentido.

• Estado de la válvula

Se refiere, al estado de la válvula al inicio de la simulación. Si selecciona "open" o "close" entonces se ignora el control de la válvula y ésta empieza como un elemento abierto o cerrado respectivamente. Si se elige "none", entonces la válvula comenzará la simulación según lo determinado.

• Caudal

Es un dato de salida y, por lo tanto, no es posible modificarlo desde esta propiedad. Muestra el caudal que circula por el tramo que contiene la válvula.

• Velocidad

Es un dato de salida y, por lo tanto, no es posible modificarlo desde esta propiedad. Muestra la velocidad media del fluido dentro de la válvula, su cálculo se basa en la conservación de masa (continuidad); la velocidad se obtiene de dividir el caudal por el área transversal de la válvula.

• Pérdidas

Es un dato de salida y, por lo tanto, no es posible modificarlo desde esta propiedad. Muestra la caída de energía en el tramo donde se encuentra instalada la válvula, debido al tipo de válvula utilizada en la simulación.

• Calidad

Es un dato de salida y, por lo tanto, no es posible modificarlo desde esta propiedad. Muestra la caída de la concentración de cloro en contacto con la válvula.

• Estado

Es un dato de salida y, por lo tanto, no es posible modificarlo desde esta propiedad. Esta casilla identifica en qué períodos la válvula se encuentra abierta o cerrada.

Convierte cualquier elemento físico compatible del sistema, es decir, tubería o bomba, a una válvula.

Elementos hidráulicos > Válvulas > Convertir > Seleccione un elemento > Enter

Elimina una Válvula del sistema.

Elementos hidráulicos > Válvulas > Eliminar> Seleccione la Válvula que desea eliminar > Enter

4.3.2.6 Bombas

El subgrupo Bombas contiene las opciones Insertar Bomba, Configurar, Convertir y Eliminar.

Ilustración 67 Comandos del Menú Bombas

Opción que permite introducir una bomba en el sistema.

Elementos Hidráulicos > Bombas > Insertar > Indique un punto de inserción inicial > Indique un punto de inserción final > Aceptar

Configuración General

Permite configurar las características de los Bombas.

Elementos Hidráulicos > Bombas > Configuración General > Seleccione la Bomba

💀 FormularioParaLaConf	figuracionDeLaBomba		_		×
Bomba					
Caracteristicas		Descripcion			
Curva Caracteristica	~				
Potencia (Kw): 0) 🗧				
Velocidad Relativa: 0) 🔶	Caudal			
Estado Inicial:	OPEN ~	Altura Manométrica (m):			
Curva De Rendim	~	Calidad:			
Precio Energia \$: 0)	Estado:			
Padrón de Precios:	~	Ac	eptar	Cance	lar
Patrón	~				

Ilustración 68 Formulario para configurar bomba

Curva característica

Nombre (ID) de la curva suministrada por el fabricante para simular la bomba que se desea, con relación al caudal y a la altura dinámica total. En el Software HTP es posible construir una curva específica para cada bomba, con el fin de introducir las características con las que cuenta la bomba a la hora de impulsar el fluido. La curva característica de la bomba relaciona en el eje de las abscisas (x) el caudal (L/s), y en el eje de las ordenadas (y) la altura dinámica total o altura manométrica (m).

Nota: Para dar de alta una curva característica de la bomba, ir al apartado Datos

• Potencia (KW)

En este campo se introduce la potencia de la bomba en una simulación dada. Para hacer uso de esta propiedad, se debe tener en cuenta que Curva característica debe estar vacía o de lo contrario no se asumirá el valor introducido en la potencia.

• Velocidad Relativa

Establece un factor que haga variar la velocidad angular con la que gira el motor de la bomba. El factor a introducir se puede hallar a partir de la siguiente expresión:

```
FVR=Vr/Vn
```

Donde: *FVR*= factor de velocidad relativa *Vr*= velocidad requerida por el usuario *Vn*= velocidad nominal de la bomba

• Estado inicial

A partir de esta opción el usuario puede iniciar la simulación con la bomba encendida o apagada. De manera predeterminada, se establecen todas las bombas encendidas, a menos que el usuario tenga asignada una gráfica patrón para la bomba. La propiedad Estado inicial se hace nula al establecer un patrón de funcionamiento de la bomba para el análisis en período extendido (red dinámica).

• Curva de Rendimiento

Asigna la identificación (ID) o nombre de la curva de rendimiento. La curva de rendimiento establece la relación entre el rendimiento o eficiencia (ubicado en el eje de las ordenadas) y el caudal (ubicado en el eje de las abscisas)

• Precio. Energía

Asigna un valor monetario al consumo de energía que demanda la bomba. Las unidades del precio de la energía están calculadas con base en la potencia eléctrica que consume el motor de la bomba durante una hora.

• Padrón de Precios

Identificativo (ID) de un patrón de precios a la energía que consume la bomba. Un patrón de precios hace posible variar el precio de la energía en el transcurso de 24 horas; esta variación sirve para simular el precio de la energía en regiones donde el precio del kilowatt varía en el transcurso del día.

• Patrón

En esta casilla se debe introducir la identificación de del padrón para el comportamiento de la bomba. Al construir el patrón de comportamiento de la bomba, se logra hacer variar la velocidad de giro o velocidad angular del motor de la bomba por medio de factores, al igual que en la propiedad anterior, pero teniendo en cuenta un período de 24 horas. Este patrón es útil para simular el encendido y apagado de la bomba. Si se requiere tener encendida la bomba se utiliza el coeficiente uno (1) y si se desea apagar se utiliza el coeficiente cero (0).

• Descripción

Permite colocar una descripción acerca de este depósito

• Caudal

Muestra el caudal que es suministrado por la bomba para cada período de simulación. Esta propiedad es un dato de salida

• Altura manométrica

Indica la altura dinámica total que está suministrando la bomba al fluido. Esta altura indica la cabeza de energía suministrada para vencer las cabezas de fricción en tuberías y accesorios, altura estática de succión y la altura estática de impulsión. Este dato es de salida

Calidad

Indica la caída de la concentración del cloro en contacto con la bomba. La concentración esta expresada en partes por millón (ppm) o miligramos por litro (mg/L). Desde esta propiedad no es posible modificar la concentración, ya que es un dato de salida.

• Estado

Visualiza los períodos en los que la bomba se encuentra encendida o apagada. Es un dato de salida y, por lo tanto, no es posible modificar su estado.

Convierte cualquier elemento físico compatible del sistema, es decir, tubería o válvula, a una bomba.

Elementos hidráulicos > Bombas > Convertir > Seleccione un elemento > Enter

Elimina una Bomba del sistema.

Elementos hidráulicos > Bombas > Eliminar> Seleccione la Bomba que desea eliminar > Enter

4.3.3 Cálculo Hidráulico

El grupo Cálculo Hidráulico está dividido en dos comandos:

Ilustración 69 Comandos del Bloque Cálculo Hidráulico

4.3.3.1 Cálculo Hidráulico

Comando para iniciar el análisis de la simulación, además permite generar la memoria de cálculo del sistema.

Ilustración 70 Comando Cálculo Hidráulico

Cálculo Hidráulico > Cálculo Hidráulico > Seleccione cualquier elemento del Sistema > Elegir la ruta de guardado para la Memoria de Cálculo > Guardar

 ← → * ↑ ● > Este equipo ✓ Carpetas (7) → Acceso rápido → OneDrive → Este equipo → Este equipo → Descargas → Document → Escritorio → Imágenes → Música → Objetos 3D ✓ Videos 	Guardar como									~
Organizar •	← → × ↑ 💻	> Este	e equipo			~	ڻ Busc	ar en Este equij	ро	ρ
 Acceso rápido OneDrive Este equipo HTP (F) Carpetas (7) La construction de la construct	Organizar 🔻								-	?
	 Acceso rápido OneDrive Este equipo HTP (F:) 	^ ~	✓ Carpetas (Descargas	7) Document os	Escritorio	Imágenes	Núsica	Objetos 3D	Vídeos	ĺ
	∧ Ocultar carpetas							Guardar	Cancelar	

Ilustración 71 Formulario para Guardad la Memoria de Cálculo

4.3.3.2 Revisión

Comando que permite la revisión de ciertos parámetros en los tramos o conexiones del sistema, como son: presión, velocidad y gasto

Ilustración 72 Comando Revisión

Cálculo Hidráulico > Revisión > Seleccione un sistema > Seleccionar las opciones requeridas del formulario

🖳 Revisión				_		×
Nodos Líneas Tiempo	Ocultar Ocultar 1:0					~
× [الا	•				•	>
Lineas - - -	C	ľ	Nodos	- - -		
Restaurar				-	Сег	rrar

Ilustración 73 Formulario para Revisión de Sistema

• Nodos

Despliegue la lista de la casilla y seleccione el parámetro que desea visualizar en el sistema, entre los cuales están: Cota, Demanda Base, Calidad Inicial, Demanda, Altura, Presión y Calidad.

Ilustración 74 Parámetros para seleccionar en la opción nodos

• Líneas

Despliegue la lista de la casilla y seleccione el parámetro que desea visualizar en el sistema, entre los cuales están: Longitud, Diámetro, Rugosidad, Coeficiente de Flujo, Coeficiente de Pared, Caudal, Velocidad, Pérdidas Unitarias, Factor Fricción. Velocidad de Reacción y Calidad.

🖳 Revisión		_		×
Nodos	Ocultar			
Línene				
Tierree	Ocultar			Ť
Tiempo	Longitud Diametro			
<	Rugosidad Coeficiente de Flujo			
[◀	Coeficiente De Pared Caudal			
	Perdidas Unitarias.			
Lineas	Velocidad de Reación Calidad			
-				U
-		-		
-		-		
Destaura			C -1	
Restaurar			Cer	rar
Listo				.:

Ilustración 75 Parámetros para seleccionar en la opción Líneas

• Tiempo

Intervalo de tiempo para visualizar los parámetros seleccionados anteriormente.

• Controles de intervalo

Permite que el intervalo de tiempo pueda avanzar o retroceder.

🔛 Revisión			-		×
Nodos Líneas Tiempo	Ocultar Ocultar 1:0				~
				•	>
Lineas - - - -		- Nodos -	- - -		ľ
Restaurar				Ce	rrar

Ilustración 76 Controles de Intervalo

• Opciones de Líneas

Una vez que se seleccionó el parámetro deseado para visualizar en el sistema, se activará esta opción para configurar colores e intervalos de los parámetros.

🔛 Revisión			_		×
Nodos Líneas Tiempo	Presión Velocidad 1:0				~ ~ ~
< ◀	•				>
Lineas 0.01 0.1 1 2		Nodos	25 50 75 100		ľ
m/s Restaurar			m	Ce	errar

Ilustración 77 Parámetros para Opciones de Líneas

• Botón Editor de Leyenda

Botón representado por ícono de papel y lápiz, permite fijar los rangos numéricos asignados a los diferentes colores con que se visualizará una determinada magnitud sobre el esquema de la red. Las opciones que ofrece son las siguientes:

赔 Editor De Leyenda	– 🗆 X
Lineas	
0.010 🚖	Intervalos Iguales
0.100 ≑	Cantidades Iguales
1.000 🚖	Paleta de Color
2.000 🚖	Invertir Colores
m/s	
	Aceptar Cancelar

llustración 78 Editor de Leyenda

1) Para cambiar un color, pulsar sobre él en el botón de colores y seleccionar un nuevo color sobre la nueva ventana mostrada.

A Select Color			×
Index Color True Color		Color Books	
		By <u>L</u> ayer	ByBloc <u>k</u>
Color:		7	
	ОК	Cancel	<u>H</u> elp

Ilustración 79 Selección de Color para intervalos

 Para delimitar los rangos aplicables, introducir los valores de éstos en los recuadros correspondientes, llevando cuidado de que queden en orden creciente. No es necesario rellenar todos los recuadros.

🔢 Editor De Leyenda	– 🗆 X
Lineas	
0.200 🚖	Intervalos Iguales
0.400 ≑	Cantidades Iguales
0.600 🖨	Paleta de Color
0.800 🚖	Invertir Colores
m/s	
	Aceptar Cancelar

Ilustración 80 Rangos para intervalos

3) Unidad: En la parte inferior izquierda del formulario se visualizan las unidades correspondientes al parámetro seleccionado.

🖳 Editor De	Leyenda	_		×
Lineas				
0.20	00 ≑	Intervalo	s Iguale:	8
0.40	00 🜲	Cantidad	es Iguale	s
0.60	00 🖨	Paleta	de Color	
0.80	00 🖨	Invertir	Colores	
m/s				
		Aceptar	Car	ncelar

Ilustración 81 Unidades del parámetro seleccionado

4) Intervalos Iguales: Permite dividir el rango total de variación de la magnitud seleccionada en el instante actual en cinco intervalos iguales.

- 5) Cantidades Iguales: Permite dividir el rango total de variación de la magnitud seleccionada en el instante actual en cinco intervalos, de modo que el número de elementos que entren en cada intervalo sea el mismo.
- 6) Paleta de Color: Permite seleccionar los colores de una lista de gamas de color predeterminada.

Ilustración 82 Formulario Paleta de Colores

- 7) Invertir Colores: Permite invertir el orden de los colores actualmente seleccionados (el color correspondiente al rango inferior pasa a corresponderse con el rango superior y a la inversa)
- Opciones de Nodos

Una vez que se seleccionó el parámetro deseado para visualizar en el sistema, se activará esta opción para configurar colores e intervalos de los parámetros.

Ilustración 83 Parámetros para Opciones de Nodos

Para la configuración de las opciones de nodos, consultar las Opciones de Línea, debido a que son los mismos parámetros y procedimientos a ejecutar.

• Botón Restaurar

Permite regresar a la configuración por defecto.

4.3.4 Ajustes de Sistema

El Grupo Ajustes del Sistema está dividido en tres cajas de comandos:

Ilustración 84 Comandos del Bloque Ajustes del Sistema

4.3.4.1 Perfil Hidráulico

El subgrupo Perfil Hidráulico contiene las opciones Generar, Editar y Eliminar. Representa la línea del sistema presurizado en perfil; se indican los nodos, así como anotaciones del tramo.

Ilustración 85 Comandos del Menú Perfil Hidráulico

Nota: El Subgrupo Perfil Hidráulico, se tendrá disponible en versiones futuras del Software HTP

Opción que permite generar un perfil hidráulico en el sistema.

Ajustes de Sistema > Perfil hidráulico > Generar > Seleccione tramos > Enter

Se mostrará la ventana "Configuración de Perfil" con el objetivo de establecer un formato inicial al perfil.

🕭 Configuración de Perfil								×
Perfil	Características de Capas							
Prefijo de Capas: 🛛 😵	Cuadrículas	Act.	Color	Transp.	Fuente	Тіро	Grosor	^
Título:	CuadrículaTextoHor	9		0	Arial			
Escala Horizontal:	CuadrículaTextoVer	9		0	Arial			
Escala Vertical: 2 🔶 : 1 🜩	CuadriculaLínea	9		50 🗘		Continuous	ByLineWeightDefault	
Graduación	Contorno	9		0 🗘		Continuous	ByLineWeightDefault	
Retícula Horizontal a Cada: 20.00	Anotaciones	Act.	Color	Transp.	Fuente	Tipo	Grosor	
Retícula Vertical a Cada: 0.50	AnotaciónTitulo	9		0	Arial			
No. Decimales	AnotaciónTexto	9		0	Arial			
Longitud: 2 🗸 Retícula: 2 🗸	AnotaciónLínea	9		0		Continuous	ByLineWeightDefault	
	Terreno	Act.	Color	Transp.	Fuente	Тіро	Grosor	
Comportamiente	RasanteTerreno	9		0		Continuous	ByLineWeightDefault	
Usar Perfil de Terreno	RasanteProyecto	9		0		Continuous	ByLineWeightDefault	
Mantener el Punto de Inserción	Nodos	Act.	Color	Transp.	Fuente	Тіро	Grosor].
							Aceptar Cancel	ar

Ilustración 86 Ventana Configuración de Perfil

Es importante nombrar el Prefijo de capas, de no hacerlo, no se permite aceptar la configuración elegida debido a que es parte del título de cada capa.

Cuando el nombre del Prefijo de Capas es aprobado se mostrará una \checkmark

😻 Configuración de Perfil							_ □	\times
Perfil	Características de Capas							
Prefijo de Capas: P1	Cuadrículas	Act.	Color	Transp.	Fuente	Tipo	Grosor] ^
Título: Perfil 1	Sistema_1_P1_CuadrículaTextoHor			0 🜲	Arial			
Escalas	Sistema_1_P1_CuadrículaTextoVer			0 📫	Arial			
Escala Vertical:	Sistema_1_P1_CuadrículaLínea	0		50 🜲		Continuous	ByLineWeightDefault	
Graduación	Sistema_1_P1_Contorno	8		0		Continuous	ByLineWeightDefault	
Retícula Horizontal a Cada: 20.00	Anotaciones	Act.	Color	Transp.	Fuente	Tipo	Grosor]
Retícula Vertical a Cada: 0.50	Sistema_1_P1_AnotaciónTitulo			0 📫	Arial			
No. Decimales Longitud: 2 • Retícula: 2 • Pendiente: 2 • Notaciones: 2 •	Sistema_1_P1_AnotaciónTexto			0 🗘	Arial			
	Sistema_1_P1_AnotaciónLínea	0		0 🔹		Continuous	ByLineWeightDefault	
	Terreno	Act.	Color	Transp.	Fuente	Tipo	Grosor]
	Sistema_1_P1_RasanteTerreno	9		0		Continuous	ByLineWeightDefault	Ī
Comportamiento ✓ Usar Perfil de Terreno	Sistema_1_P1_RasanteProyecto			0		Continuous	ByLineWeightDefault	
Mantener el Punto de Inserción	Nodos	Act.	Color	Transp.	Fuente	Tipo	Grosor].
							Aceptar Cancela	ır

Ilustración 87 Nombres del Prefijo de Capas y Título del Perfil

En la ventana de configuración se desglosa:

Perfil:

- Prefijo de Capas: Escriba el prefijo con el cual se complementará la etiqueta de las capas generadas.
- Título: Escriba el título del perfil, éste se mostrará en la parte inferior derecha.

Escalas. Elige las escalas adecuadas para el perfil al hacer clic en las flechas o simplemente escribir el número.

Graduación. Alude al espacio indicado entre las líneas que componen la malla del perfil para una mejor precisión visual.

No. de decimales. Tiene la posibilidad de colocar el número de decimales necesarios en el dibujo.

Comportamiento.

Active la casilla "Usar Perfil de Terreno" si desea que el perfil se calcule nuevamente de acuerdo con una triangulación seleccionada.

Active la casilla "Mantener Punto de inserción" si desea que el perfil se mantenga en el mismo punto donde fue insertado, de lo contrario, podrá cambiarlo de posición.

Características de capas.

- *Capas.* Se designan con el prefijo de capas de la red, el prefijo de capas del perfil y el elemento que lo compone: Sistema_1_P1_AnotaciónTítulo.
- Las características restantes como son: el estado de capa, color, transparencia, fuente, tipo de línea y grosor se configuran de la misma manera que se mostró en configuración de sistema (Pág.;Error! Marcador no definido.).

Aceptar. Al haber aceptado el formulario deberá indicar el punto de inserción para el perfil de los tramos seleccionados.

Si ha activado la casilla de "Usar Perfil del Terreno" deberá seleccionar la triangulación con la que desea calcular las elevaciones del perfil e inmediatamente indicar el punto de inserción.

Modifica la configuración del perfil, es decir, se desglosa la ventana de la Ilustración 87

Ajustes de Sistema > Perfil hidráulico > Editar > Seleccione un perfil > Configure > Aceptar

Suprime todo el perfil.

Ajustes de Sistema > Perfil hidráulico > Eliminar > Seleccione un perfil > Sí

4.3.4.2 Modificar geometría

El subgrupo Modificar Geometría contiene las opciones Conexión interior y Mover Conexión.

Ilustración 88 Comandos del Menú Geometría

Conexión Interior

Coloca una conexión en cualquier tramo del sistema. En el sistema se podrá observar la conexión añadida, la rasante (que en principio está en ceros) y el número de conexión siendo éstos modificables.

Ajustes de Sistema > Modificar Geometría > Conexión Interior > Seleccione tramo de tubería > Indique el punto de inserción > Enter

Mover conexión

Cambia de posición el nodo en un nuevo punto modificando consigo la longitud del sistema. Ajustes de Sistema > Modificar Geometría > Mover Conexión > Seleccione Conexión > Indique el punto > Enter

4.3.4.3 Herramientas

El grupo Herramientas, contiene comandos de apoyo para el análisis de un sistema presurizado, además de una opción para insertar detalles.

Ilustración 89 Comandos del Menú Herramientas

Coloca los detalles de las estructuras necesarias en el proyecto de forma general.

Ajustes del Sistema > Herramientas > Insertar Detalles > Elija el detalle necesario > Insertar > Precise punto de inserción o (Puntobase Escala X Y Z Girar) > Indique factor de escala X, precise esquina opuesta, o (Esquina XYZ) > Precise ángulo de rotación > Enter

Nota: El comando Insertar Detalles, se tendrá disponible en versiones futuras del Software HTP.

Estima a partir de los últimos censos y/o conteos obtenidos del INEGI o la CONAPO la población de diseño.

Ajustes del Sistema > Herramientas > Población > Llenar formulario > Generar Reporte > Guardar

Ilustración 90 Formulario Cálculo de Población

 Datos del proyecto. Si lo desea, el usuario puede escribir un nombre de proyecto y la localidad; también, puede elegir el municipio y estado donde se proyectará el sistema de agua potable.

- Periodo de diseño. Tiempo estimado en el que el sistema funcionará adecuadamente, el proyectista se encargará de definir el tiempo y se escribirá en la casilla.
- Censos o conteos de población. La información se encuentra en INEGI o directamente de la CONAPO, posteriormente se agregan a la tabla y a la par se hace una gráfica de barras.
- Métodos de ajuste:

Por mínimos cuadrados. Este procedimiento consiste en calcular la población de proyecto a partir de un ajuste de los resultados de los censos en años anteriores, a una recta o curva, de tal modo que los puntos pertenecientes a éstas difieran lo menos posible de los datos observados.

Para determinar la población de proyecto, será necesario considerar el modelo matemático que mejor represente el comportamiento de los datos de los censos históricos de población (lineal, exponencial, logarítmica o potencial), obteniendo a las constantes "a" y "b" que se conocen como coeficientes de la regresión.

Existe un parámetro que sirve para determinar qué tan acertada fue la elección de la curva o recta de ajuste a los datos de los censos. Este se denomina coeficiente de correlación "r", su rango de variación es de -1 a +1 y conforme su valor absoluto se acerque más a 1 el ajuste del modelo a los datos será mejor.

En el formulario se pueden activar y desactivar las casillas que indican los métodos a reflejarse en la gráfica.

Por comparación. Este método consiste en comparar la tendencia del crecimiento histórico de la población estudiada contra el de otras ciudades con mayor número de habitantes, siendo similares desde el punto de vista socioeconómico, y, adoptar la tasa media de crecimiento de ellas.

En el formulario se pueden activar y desactivar las casillas que indican los métodos a reflejarse en la gráfica.

• Generar reporte

Hacer clic en esta opción una vez que ha indicado el método más adecuado.

4.3.5 Datos

El grupo Datos, contiene las siguientes opciones Patrones, Curvas, Controles y Tiempo.

Ilustración 92 Comandos del Menú Datos

Permite ingresar Patrones de Demanda para un Análisis en Periodo Extendido

Datos > Patrones > Seleccione un elemento del sistema > Crear > Llenar el formulario > Aceptar

Al seleccionar un elemento del sistema, se generara un formulario para dar de alta el patrón de demanda

Patrones		×
Crear	Editar	Eliminar

Ilustración 93 Formulario Opciones Patrones

• Botón Crear: Permite ingresar un nuevo patrón de demanda

🐼 Configura	ción de Patrón [1]				-	- 🗆	×
ID Patrón		Descripc	ión				
1							
	4	2	2		5	0	
Valar		2	3	4	5	6	
							>
-							-
						Se	ries1
							intos
Cargar	Guardar		Асер	tar C	ancelar		Ayuda

Ilustración 94 Configuración de Patrones

ID Patrón: Ingresar el nombre o identificativo del Patrón de Demanda

Descripción: Permite ingresar una breve descripción para distinguir el Patrón.

Periodo: Indica el intervalo entre cada uno de los periodos

Valor: Permite ingresa los valores de demanda para cada uno de los periodos.

Al momento de ingresar los valores, se comenzará a dibujar una gráfica de barras con los datos correspondientes.

Ilustración 95 Ejemplo de Patrón de Demanda

Hacer clic en el botón Cargar, se permita seleccionar y abrir un archivo de texto para poder importar los datos de un patrón de demanda.

4				
- -	Usuario			
Acceso rápido	Este equipo			
Escritorio	Bibliotecas			
Bibliotecas	HTP (E:)	-		
	12,7 GB disponibles de 14,	4		
	Patrón Demanda.txt			
Este equipo	Documento de texto 146 bytes			
Nor Red	bre: Patrón Demanda.txt		~	Abrir
Tipo	Texto (*.txt)		~	Cancelar

Ilustración 96 Ventana para abrir archivo de texto

El Patrón de Demanda se cargará automáticamente en el formulario.

Si desea conservar el Patrón para posteriormente hacer uso de él, haga clic en guardar, seleccione la ruta de guardado, y de Aceptar.

- Botón Editar: Permite entrar nuevamente al formulario de Patrón de Demanda y editar algún valor.
- Botón Eliminar: Permite Eliminar cualquier patrón creado anteriormente.

Permite ingresar Curvas de diferentes tipos para configurar algunos Elementos Hidraulicos

Datos > Curvas > Seleccione un elemento del sistema > Crear > Llenar el formulario > Aceptar

Al seleccionar un elemento del sistema, se generara un formulario para dar de alta una curva.

Ilustración 97 Formulario Opciones de Curvas

🖳 2		-		×
ID Curva	Descripción			
Tipo de Curva	Ecuación			
Caudal Altura				
Cargar Guardar	Aceptar Cancelar	Аул	ıda	

Botón Crear: Permite ingresar una nueva curva para el sistema.

Ilustración 98 Configuración de Curvas

ID Curva: Ingresar el nombre o identificativo de la Curva

Descripción: Permite ingresar una breve descripción para distinguir la Curva.

Tipo de Curva: Seleccione el tipo de curva a ingresar.

- 1) Volumen: Permite ingresar la curva para establecer el llenado de las fuentes de abastecimiento, vincula la altura del embalse o depósito contra el volumen de fluido dentro de la fuente.
- 2) Bomba: Permite ingresar la curva suministrada por el fabricante para simular la bomba que se desea, con relación al caudal y a la altura dinámica total.
- 3) Rendimiento: Permite ingresar una curva de rendimiento, la cual establece la relación entre el rendimiento o eficiencia (ubicado en el eje de las ordenadas) y el caudal (ubicado en el eje de las abscisas).
- 4) Pérdidas: Permite ingresar la curva para establecer las pérdidas de caudal en el sistema, vincula el caudal contra las pérdidas.

Ecuación: Define la ecuación con base a los puntos ingresados en cada curva.

Al momento de ingresar los valores, se comenzará a dibujar una gráfica con los datos correspondientes.

1			- C) ×
ID Curva	Descripción Curva de Bom	ba para	Pozo Profundo	
Tipo de Curva BOMBA ~	Ecuación Altura=136.00	-0.4482((Caudai)^2.00	
Caudal Altura 8.71 102	Altura (m)	140 - 120 - 100 - 80 - 60 - 40 - 20 - 0 -	0 10 20 Caudal (LPS)	
Cargar Guardar			Aceptar Cancelar Ayuda	

Ilustración 99 Ejemplo de Curva Característica de Bomba

Hacer clic en el botón Cargar, se permita seleccionar y abrir un archivo de texto para poder importar los datos de una curva.

Curva								×
Buscar en:	Escrito	no	~	Ø	1 🖻			
*	2	Usuario						^
Acceso rapido		Este equipo						
Escritorio		Bibliotecas						
Bibliotecas		HTP (E:)						
	-	12,7 GB disponibles de 14,4						
Este equipo		Curva.txt Documento de texto 146 bytes						~
Pad	Nombre:	Curva.txt				~	Abrir	
Red	Tipo:	Texto (*.txt)				~	Cancelar	
							Ayuda	

Ilustración 100 Ventana para abrir archivo de texto

La curva se cargará automáticamente en el formulario.

Si desea conservar la Curva para posteriormente hacer uso de ella, haga clic en guardar, seleccione la ruta de guardado, y de Aceptar.

- Botón Editar: Permite entrar nuevamente al formulario de Curva y editar algún valor.
- Botón Eliminar: Permite Eliminar cualquier curva creada anteriormente.

Controles

Permite ingresar controles para programar los elementos hidraulicos, es decir, indicar en qué momento se pueden abrir o cerrar, solamente para un Análisis en Periodo Extendido

Datos > Controles > Seleccione un elemento del sistema > Elegir Simple o Programado > Crear > Llenar el formulario > Aceptar

Permite ingresar características del Tiempo de la simulación, para un Análisis en Periodo

Extendido

Datos > Tiempo > Seleccione un elemento del sistema > Llenar el formulario > Aceptar

4.3.6 Cotización

El comando Cotizar lo pondrá en contacto con personal de Hidráulica Termo Plus, lo cual permitirá obtener la información de materiales, cantidades y presupuesto de su proyecto.

NOTA: Los resultados arrojados por el Software HTP en su Módulo Presurizados, están destinados a apoyar o facilitar la realización de un proyecto de Agua Potable, por lo que es responsabilidad del usuario la utilización de dichos datos.

5. Ejemplos

5.1 Ejemplo 1

En una localidad, se realizará una línea de conducción desde un pozo hasta llegar a un tanque de almacenamiento, el fluido será impulsado con ayuda de un sistema a bombeo, el croquis se presenta a continuación:

Ilustración 101 Croquis de localidad

1. Trazo:

Redes > Trazo > Indique la posición de la conexión > Indique la siguiente posición de la conexión

105

2. Reconocer:

Redes > Reconocer > Selecciona los trazos > Enter > Configuración de red > Aceptar

Ilustración 103 Reconocer Sistema

Configuración de la Red:

Redes > Configurar Parámetros > Seleccione cualquier elemento de la red > Indicar los parámetros necesarios > Aceptar

Los parámetros que se tomarán en cuenta son los siguientes:

Propiedades Hidráulicas Propiedad	Valor		Tiempo	Hro: Mir		Calidad			
Unidades de Caudal	LPS	\sim	Propiedad Duración Tatal	HIS:MIR	•	1	Propiedad	V٤	alor
	DW	-	Duración i otal	U			Parametro	NONE	
Ecuación de Perdidas	D-VV	~	Intervalo Calculo Hidraulico	1:00			Unidades Densidad	mg/L	
Peso Específico	1.000	÷	Intervalo Cálculo Calidad	0:05			Difusividad Relativa	1 000	L
Viscosidad Relativa	1.000	÷	Intervalo Patrones	1:00					l
Iteraciones Máx.	40	-	Tiempo de Inicio Patrón	0:00			Nodo Procedencia		
Precisión	0.001	-	Intervalo Informe	1:00			Tolerancia	0.010	
Sistema No Equilibrado	CONTINUE	~	Tiempo Inicio Informe	1:00		Energia	Propiedad	Va	alor
Patrón Predeterminado		\sim	Tiempo Inicio Reloj	12 am			Rend. Bomba(%)	75.00	ł
Factor Demanda	1.000	-	Estadistica	NONE	\sim		Precio Energia/Kwh	0.00	ŀ
Exponente Emisores	0.500	-	Reacciones				Patron de Precios		
Informe de Estado	NONE	~	Propiedad	Valor			Término de Potencia	0.00	ļ
CHECKFREQ	2.000	÷	Orden de Reacción de Flujo	1.000	÷				
MAXCHECK	10.000	÷	Orden de Reacción de Pared	FIRST	\sim				
DAMPLIMIT	0.000	\$	Coef. Global Flujo	0.000	-				
	200 - TOM F	VC	Coef. Global Pared	0.000	-				
Diametro Por Material			Concentracion Límite	0.000	-				
Diametro Por Material	189.200	-							

Ilustración 104 Configuración de Parámetros

Unidades de Caudal: LPS (Litros Por Segundo).

Ecuación de Pérdidas: D-W (Darcy-Weisbach).

Diámetro por Material: Molecor, PVC O-500, diámetro 200 mm.

lustración 105 Sistema configurado

3. Calcular Rasante

Elementos Hidráulicos > Conexiones > Calcular rasante > Seleccione un elemento del sistema > Selecciona una triangulación > Enter > Indique la profundidad de la tubería (1.0) > Enter

Ilustración 106 Calcular rasante

4. Indicar Rasante

La rasante de la Conexión 1 y 2 se cambiarán, debido a que la tubería 14 será considerada como el tren de válvulas para la línea de conducción, por lo tanto, la conexión 2 tendrá la misma elevación que la 3, es decir, 2353.051. Mientras que la conexión 1, tendrá una elevación 70.0 mts menos que la 2, ya que solo será una conexión auxiliar para poder colocar el sistema de bombeo, es decir, 2353.051-70.00=2283.051

Elementos Hidráulicos > Conexiones > Indicar rasante > Seleccione la Conexión > Ingrese la nueva rasante > Indique la profundidad de la tubería (1.0) > Enter

Ilustración 107 Conexiones con elevaciones o rasantes nuevas

5. Numerar Conexiones

La nueva numeración comenzará a partir de la conexión 3.

Elementos Hidráulicos > Conexiones > Numerar Conexiones > Ingrese el nuevo identificador numérico > Seleccione la conexión con la que comenzará la secuencia

Ilustración 108 Sistema con nueva numeración

6. Renumerar Conexiones

Se cambiará el identificativo de dos conexiones, la Conexión 15 se convertirá en la conexión NP (Nivel de Piso), mientras que la Conexión 16, tendrá el nombre de NA (Nodo Auxiliar)

Elementos Hidráulicos > Conexiones > Renumerar Conexiones > Seleccione una conexión > Ingrese en Nuevo Identificativo

[L: 20.00m] [C: 0.00lps] [ID: 14] [D: 189. NP 0.00 2353.051 0.00 [L: 10.00m] [C: 0.00lps] [V: 0.00mps] [ID: 15] [D: 189.2mm] NA **M**NA 0.00 2283.051 0.00

Ilustración 109 Nueva numeración en Conexiones NA y NP

7. Configurar Parámetros de Conexión

Se colocará un identificativo en el formulario para reconocer la Conexión NP (Nivel de Piso)

Elementos Hidráulicos > Conexiones > Configurar Parámetros > Seleccione una

conexión (NP) > Llenar el formulario

onfiguración de Conexión Descripción				
livel de Piso				
Características		Demanda		
Elevación de Terreno(m): 2	353.05	Categoría de Demanda:	0	
Profundidad de la Instalación(m): 1	.00	Patrón de Demanda:		
*Elevación de la Tuberia(m): 2	352.05	r da on de Bemanda.		
Demanda Base(Ips): 0	.00	Resultados		
Calidad Inicial: 0		Altura Total(m):	0.00	
Fuente de Calidad		Presión:	0.00	
		Demanda Actual (Ips):	0.00	
		Calidad:	0.00	

Ilustración 110 Configuración de Conexión NP

8. Indicar Demanda

Se ingresará en la última conexión (14), antes de llegar al tanque, una demanda de 8.71 lps

Elementos Hidráulicos > Conexiones > Indicar Demanda > Seleccione una conexión

(14) > Ingrese la Demanda

2	🕭 Configurar Conexión [14]			_		٦
	Configuración de Conexión					
	Descripcion					
N N	Características		Demanda			
	Elevación de Terreno(m):	2374.90 ≑	Categoría de Demanda:	0		
	Profundidad de la Instalación(m):	1.00	Patrón de Demanda:		~	
	*Elevación de la Tuberia(m):	23/3.90	Resultados			
	Demanda Base(Ips):	0	Altura Total(m):	0.00		
2374 895	Fuente de Calidad	•	Presión:	0.00		
0.00			Demanda Actual (Ips):	0.00		
\sim			Calidad:	0.00		
Sele				Aceptar	Cancelar	
			/ /			-

Ilustración 111 Ingreso de Demanda Base en Conexión 14

9. Editar Numeración de Tuberías

Se cambiará el identificativo de la tubería 14, el nuevo ID será TV (Tren de Válvulas).

Elementos Hidráulicos > Tuberías > Editar Numeración > Seleccione la tubería (14)

> Ingrese el nuevo Identificativo (TV) > Enter

Ilustración 112 Cambio del ID en tubería del Tren de Válvulas

10. Configuración de Parámetros de Tuberías

La tubería TV se configurará, el coeficiente de pérdidas menores, se tomará en cuenta de la siguiente manera

Elementos Hidráulicos > Tuberías > Configurar Parámetros > Seleccione la tubería

(T	V)					🕭 Pérdidas Menores				>	<
(-						Elemento	Factor		Cantidad		^
					۱.	General	0.00	0		-	
😻 Configuració	n de Tuberia [TV]		- [×		Valvula de globo, completamente abierta	10.00	0		-	
					11	Valvula en ángulo, completamente abierta	5.00	0		÷	
Descripción						Válvula check completamente abierta	2.50	0		1	
Tren de Válvulas						Válvula de compuerta, completamente abierta	0.20	1		÷	
Propiedades		Resultados				Válvula de compuerta, con 3/4 de apertura	1.15	0		÷	
*Longitud:	20.000	Caudal:	0			Válvula de compuerta, con 1/2 de apertura	5.60	0		-	
Material	200 - TOM PVC-O 500 -	Velocidad:	0			Válvula de compuerta, con 1/4 de apertura	24.00	0		-	
Material	Molecor	Perdiden Unitarian	0			Codo de radio corto (r/d = +- 1)	0.90	0		-	
*Diametro:	189.200	Ferdidas Unitarias.				Codo de radio mediano	0.80	0		÷	
*Rugosidad:	0.00900	Factor Fricción:	0			Codo de gran radio (r/d = +- 1.5)	0.60	0		÷	
Coef. Perdidas:	1.000	Vel. Reacción:	0			Codo de 45°	0.40	þ		÷	
Estado Inicial:	OPEN	Calidad:	0			Retorno (curva en U)	2.20	0		÷	
Estado micial.		Estado:				Tee en sentido recto	0.30	0		÷	
Coef. Flujo:	0.000					Tee a través de la salida lateral	1.80	0		-	
Coef. Pared:	0.000	Aceptar	(Cancelar		Unión	0.30	0		-	
						Yee de 45°, en sentido recto	0.30	0		÷	
						Yee de 45°, salida lateral	0.80	0		-	
						Entrada recta a tope	0.50	0		-	
						Entrada con boca acampanada	0.10	0		-	
						Entrada con tubo reentrante	0.90	0		÷	~
						Total: 1.	00 Acepta	ar	Cano	elar:	

Ilustración 113 Cálculo del Coeficiente de Pérdidas Menores en Tubería TV

11. Insertar fuente de Abastecimiento

Se insertará un Embalse como fuente de abastecimiento, para poder representar el Pozo de

Agua.

Elementos Hidráulicos > Embalses > Insertar Embalse > Seleccione un elemento del sistema > Indique la posición del Embalse

12. Configurar Embalse

La altura del Embalse será la misma que la del NA, ya que esta elevación ya toma en cuenta los 70.0 mts de profundidad con los que cuenta el pozo.

Elementos Hidráulicos > Embalses > Configurar > Seleccione un Embalse > Llene el

formulario > Aceptar

🕭 Embalse			_		Х
Propiedades Descripción Pozo de Agua a 70 mts de profundio	dad				
*Atura Total: (msnm)	2283.05	Cota Piezométrica (m):	0		
Patrón de Altura:	Seleccionar ~	Presión (m):	0		
Caudal Suministrado (m3/s):	0	Calidad:	0		
Calidad Inicial	0.00	Fuente de Calidad			
				_	
			Aceptar	Cance	elar

Ilustración 115 Configuración de Embalse

13. Insertar equipo de Bombeo

La Bomba conectará al embalse con el resto de la red.

Elementos Hidráulicos > Bombas > Insertar > Seleccione un Elemento Inicial > Seleccione un Elemento Final

Ilustración 116 Sistema con Bomba insertada

14. Crear Curva Característica

Para que pueda trabajar la bomba, es necesario dar de alta y asignarle una curva característica, la cual tendrá las características de impulsar un caudal de 8.71 lps (es el caudal necesario para abastecer al tanque de la localidad, también, es el mismo caudal que se ingresó como

demanda al nodo 14) y por lo menos tiene que vencer los 70.0 mts de profundidad del pozo, más e desnivel del nodo más alto contra el más bajo, se tomarán en cuenta 10.0 mts que resulta como elevación del tanque:

A= Profundidad del pozo + Desnivel entre conexiones + Altura del tanque A=70.0 mts + 22.0 mts + 10.0 mts = 102.0 mts

Datos > Curvas > Insertar > Seleccione un Elemento del Sistema > Crear > Llenar el formulario > Aceptar

Ilustración 117 Curva Característica de la Bomba para el Sistema

15. Asignar a la bomba la curva característica

Una vez que se dio de alta la curva, se deberá asignar a la bomba.

Elementos Hidráulicos > Bombas > Configurar > Seleccione la bomba > Ingresar el Identificativo de la Curva a la Bomba > Llenar el formulario > Aceptar

۵.					×
Bomba					
Caracteristicas		Descripcion			
Curva Caracteristica	1 ~	I			
Potencia (Kw):	0.00				
Velocidad Relativa:	0.00	Caudal	6.595688	8198852	25
Estado Inicial:	OPEN ~	Altura Manométrica (m):	0.463648	80212211	61
Curva De Rendim	~	Calidad:	0.001500	0000130	3852
Precio Energia \$:	0.00 🚖	Estado:	OPEN		
Padrón de Precios:	~				
Patrón	~	Ac	eptar	Cano	elar

16. Insertar el Tanque de Almacenamiento

Se insertará un Depósito representando un tanque de Almacenamiento cerca de la conexión 14

Elementos Hidráulicos > Depósitos > Insertar > Seleccione cualquier elemento del Sistema > Indique la posición del depósito

Ilustración 119 Depósito insertado en el Sistema

17. Configurar las propiedades del Depósito

Se tomarán en cuenta los 10.0 mts de altura en el depósito que se estableció anteriormente, es decir, la elevación del depósito será la elevación de la conexión 14 más 10.0 mts.

A = Elevación Conexión 14 + Altura del TanqueA = 2374.10 mts + 10.00 mts = 2384.10 mts

Elementos Hidráulicos > Depósitos > Configurar > Seleccione un Depósito > Llene le formulario > Aceptar

٢٠ ال	_		×
Descripción Tanque elevado a 10 mts de altura			
Providendes			_
Propiedades *Elevación del Deposito (m): 2384.90 *Nivel Inicial (m): 10.00 *Nivel Mínimo (m): 0.00 *Nivel Máximo (m): 10.00 *Nivel Máximo (m): 10.00 *Nivel Máximo (m): 10.00 *Nivel Máximo (m): 10.00 *Nivel Máximo (m3): 0.00 Volumen Mínimo (m3): 0.00 Curva de Volumen *Racción de Mezcla: Voludel ote Mezcla: Coeficiente de Reacción: 0.00 Cota (m): 0 Cota (m): 0 Presión(m): 0 Calidad Inicial: 0 Calidad Final: 0	E levación de 1	Terreno	
	Aceptar	Cancel	ar

Ilustración 120 Configuración del Depósito

18. Conectar la línea de conducción con el Depósito

La conexión entre la línea y el Depósito se realizará a través de insertar una tubería

Elementos Hidráulicos > Tuberías > Insertar > Seleccione un elemento inicial > Seleccione un elemento final

Ilustración 121 Tubería insertada para conectar el Sistema con el Depósito

19. Configurar la nueva Tubería

Elementos Hidráulicos > Tuberías > Configurar Parámetros > Seleccione una tubería

> Llenar el formulario > Aceptar

Configuració	n de Tuberia [17]			
Descripción				
Propiedades		Resultados		
*Longitud:	13.715	Caudal:	0	
Material	200 - TOM PVC-O 500 - Molecor	Velocidad:	0	
*Diametro:	189.200	Perdidas Unitarias:	0	
*Rugosidad:	0.00150	Factor Fricción:	0	
Coef. Perdidas:	0.000	Vel. Reacción:	0	
Estado Inicial:	OPEN ~	Calidad:	0	
Coef. Flujo:	0.000	Estado:		
Coef. Pared:	0.000	Aceptar	(Cancelar

Ilustración 122 Configuración de Tubería nueva

Ilustración 123 Etiquetas actualizadas en la tubería nueva

20. Realizar primer Cálculo Hidráulico

Cálculo Hidráulico > Cálculo Hidráulico > Seleccione cualquier elemento del sistema

> Guardar memoria de Cálculo > Guardar

Ilustración 124 Valores resultantes después del primer Cálculo Hidráulico

Se puede observar que las conexiones y las tuberías ya contienen resultados. La memoria de cálculo se presenta a continuación:

ا ک									LC - Excel		গ • ∂ •									- Excel			
Archivo Ini	icio Inse	ertar Di	seño de pági	na Fórr	nulas C	atos Re	evisar	Vista 🖓	¿Qué desea hacer?	Archivo	Inicio Inse	rtar Di:	seño de págir	na Fórm	ulas Da	tos Rev	isar Vist	ta Ç¿⊂)ué desea ha	icer?			
Pegar	Calibri	• 11 • == •	A A		= ** • = •= •	P Ajus	star texto nbinar y cer	Ge ntrar • \$	eneral •	Pegar 🗸	Calibri	• 11 • 🖽 •	• A •		= ≫ - ≡ • ≣ - ≡	Ajusta	ar texto inar y centra	Gene	ral % 000	- 30 - 400	Formato ondicional ▼	Dar formato como tabla •	Estilos de celda *
Portapapeles 🕫		Fuente		5	A	lineación		rsi	Número r _a	Portapapele	s ra	Fuente	r	5	Ali	neación		5	Número	5		Estilos	
B10	• : :	× v	f _x Cor	nexión						B10		< 🗸	f _× Tra	mo									
A A 2 3 4 5 6 7 7 8 0	В	c	D PROYECTO: LOCALIDAD: MUNICIPIO: ESTADO: ARCHIVO: FECHA:	E Línea de Co Gan Antonico Driental Puebla LC L0/02/2022	F nducción • Virreyes	G	H	1	ј К	A A 2 3 4 5 6 7 8 8 9	в	c	D PROYECTO: LOCALIDAD: MUNICIPIO: ESTADO: ARCHIVO: FECHA:	E Línea de Co San Antonio Oriental Puebla LC 10/02/2022	F nducción o Virreyes	G	Н	1	L	L	M	N	0
9		Condici	ones de cone	viones		Cálculo H	lidráulico			10			Cond	iciones del T	ramo				Cálculo H	idráulico			
11	Conexión	Cota	Demanda Base	Calidad Inicial	Demanda	Altura	Presión	Calidad		11	Tramo	Longitud	Diámetro	Rugosidad	Coef.Flujo	Coef. Pared	Caudal	Velocidad	Pérd. Unit	Estado	Veloc. de Reacción	Calidad	
12		m	LPS	adim	LPS	m	m	adim		12		m	mm	mm	adim	adim	LPS	m/s	m/km		mg/L/d	adim	
13	NA	2283.00	0.00	0.00	0.00	2395.10	113.10	0.00		13	$1 [13 \rightarrow 14]$	69.01	200.00	0.0015	0.00	0.00	7.30	0.23	0.02	OPEN	0.00	0.00	
14	NP	2353.05		0.00	0.00	2395.10	43.05	0.00		7.4	2 [12 - 7 15]	22.12	200100	0.0015	0.00	0.00	7.50	0.25	0.02	OPEN	0.00	0.00	
10	1 1	2353.05	0.00	0.00	0.00	2205.00	43.04	0.00		15	$3 [11 \rightarrow 12]$	53.39	200.00	0.0015	0.00	0.00	7.30	i 023 i	0.02 :	UPEN			
16	1	2353.05 2353.46	0.00	0.00	0.00	2395.09 2395.08	43.04 42.62	0.00		15	$3 [11 \rightarrow 12]$ $4 [10 \rightarrow 11]$	53.39 51.39	200.00 200.00	0.0015	0.00	0.00 0.00	7.30 7.30	0.23	0.02	OPEN	0.00	0.00	
16	1 2 3	2353.05 2353.46 2354.65	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	2395.09 2395.08 2395.07	43.04 42.62 41.42	0.00 0.00 0.00		15 16 17	$3 [11 \rightarrow 12]$ $4 [10 \rightarrow 11]$ $5 [9 \rightarrow 10]$	53.39 51.39 49.73	200.00 200.00 200.00	0.0015 0.0015 0.0015	0.00 0.00 0.00	0.00 0.00 0.00	7.30 7.30 7.30	0.23 0.23 0.23	0.02 0.02 0.01	OPEN OPEN OPEN	0.00	0.00 0.00	
16 17 18	1 2 3 4	2353.05 2353.46 2354.65 2355.31	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	2395.09 2395.08 2395.07 2395.05	43.04 42.62 41.42 40.74	0.00 0.00 0.00 0.00		15 16 17 18	$3 [11 \rightarrow 12]$ $4 [10 \rightarrow 11]$ $5 [9 \rightarrow 10]$ $6 [8 \rightarrow 9]$	53.39 51.39 49.73 49.82	200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23	0.02 0.01 0.01	OPEN OPEN OPEN	0.00 0.00 0.00	0.00 0.00 0.00	
16 17 18 19	1 2 3 4 5	2353.05 2353.46 2354.65 2355.31 2356.28	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	2395.09 2395.08 2395.07 2395.05 2395.04	43.04 42.62 41.42 40.74 39.76	0.00 0.00 0.00 0.00 0.00		15 16 17 18 19	3 $[11 \rightarrow 12]$ 4 $[10 \rightarrow 11]$ 5 $[9 \rightarrow 10]$ 6 $[8 \rightarrow 9]$ 7 $[7 \rightarrow 8]$	53.39 51.39 49.73 49.82 52.39	200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.02	OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	
16 17 18 19 20	1 2 3 4 5 6	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03	43.04 42.62 41.42 40.74 39.76 38.09	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		15 16 17 18 19 20	3 $[11 \rightarrow 12]$ 4 $[10 \rightarrow 11]$ 5 $[9 \rightarrow 10]$ 6 $[8 \rightarrow 9]$ 7 $[7 \rightarrow 8]$ 8 $[6 \rightarrow 7]$ 9 $[5 \rightarrow 6]$	53.39 51.39 49.73 49.82 52.39 50.73	200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.01 0.01 0.02 0.01 0.02 0.01	OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	
16 17 18 19 20 21 22	1 2 3 4 5 6 7	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.01 2395.01	43.04 42.62 41.42 40.74 39.76 38.09 37.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		15 16 17 18 19 20 21 22	3 $[11 \rightarrow 12]$ 4 $[10 \rightarrow 11]$ 5 $[9 \rightarrow 10]$ 6 $[8 \rightarrow 9]$ 7 $[7 \rightarrow 8]$ 8 $[6 \rightarrow 7]$ 9 $[5 \rightarrow 6]$ 10 $[4 \rightarrow 5]$	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.01 0.01 0.02 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	
16 17 18 19 20 21 22 23	1 2 3 4 5 6 7 8 9	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2360.12	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.01 2395.00 2394.98	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23	3 $[11 \rightarrow 12]$ 4 $[10 \rightarrow 11]$ 5 $[9 \rightarrow 10]$ 6 $[8 \rightarrow 9]$ 7 $[7 \rightarrow 8]$ 8 $[6 \rightarrow 7]$ 9 $[5 \rightarrow 6]$ 10 $[4 \rightarrow 5]$ 11 $[3 \rightarrow 4]$	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
16 17 18 19 20 21 22 23 24	1 2 3 4 5 6 7 8 9 10	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2361.17 2362.89	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.01 2395.00 2394.98 2394.97	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24	$\begin{array}{c} 3 & [11 \rightarrow 12] \\ 4 & [10 \rightarrow 11] \\ 5 & [9 \rightarrow 10] \\ 6 & [8 \rightarrow 9] \\ 7 & [7 \rightarrow 8] \\ 8 & [6 \rightarrow 7] \\ 9 & [5 \rightarrow 6] \\ 10 & [4 \rightarrow 5] \\ 11 & [3 \rightarrow 4] \\ 12 & [2 \rightarrow 3] \end{array}$	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
16 17 18 19 20 21 22 23 24 25	1 2 3 4 5 6 7 8 9 10 11	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2361.17 2362.89 2365.16	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.01 2395.00 2394.98 2394.97 2394.95	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08 30.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24 25	$\begin{array}{c} 3 \ [11 \rightarrow 12] \\ 4 \ [10 \rightarrow 11] \\ 5 \ [9 \rightarrow 10] \\ 6 \ [8 \rightarrow 9] \\ 7 \ [7 \rightarrow 8] \\ 8 \ [6 \rightarrow 7] \\ 9 \ [5 \rightarrow 6] \\ 10 \ [4 \rightarrow 5] \\ 11 \ [3 \rightarrow 4] \\ 12 \ [2 \rightarrow 3] \\ 13 \ [1 \rightarrow 2] \end{array}$	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40 28.70	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
16 17 18 19 20 21 22 23 24 25 25 26	1 2 3 4 5 6 7 8 9 10 11 12	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2361.17 2362.89 2365.16 2367.48	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.00 2394.98 2394.97 2394.95 2394.94	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08 30.80 28.46	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24 25 26	$\begin{array}{c} 3 & [11 \rightarrow 12] \\ 4 & [10 \rightarrow 11] \\ 5 & [9 \rightarrow 10] \\ 6 & [8 \rightarrow 9] \\ 7 & [7 \rightarrow 8] \\ 8 & [6 \rightarrow 7] \\ 9 & [5 \rightarrow 6] \\ 10 & [4 \rightarrow 5] \\ 11 & [3 \rightarrow 4] \\ 12 & [2 \rightarrow 3] \\ 13 & [1 \rightarrow 2] \\ TV & [NP \rightarrow 1] \end{array}$	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40 28.70 20.00	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
16 17 18 19 20 21 22 23 24 25 26 27	1 2 3 4 5 6 7 8 9 10 11 12 12	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2361.17 2362.89 2365.16 2367.48 2369.50	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.01 2395.00 2394.98 2394.97 2394.95 2394.94 2394.92	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08 30.80 28.46 26.42	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24 25 26 27	$\begin{array}{c} 8 & [11 \rightarrow 12] \\ 4 & [10 \rightarrow 11] \\ 5 & [9 \rightarrow 10] \\ 6 & [8 \rightarrow 9] \\ 7 & [7 \rightarrow 8] \\ 8 & [6 \rightarrow 7] \\ 9 & [5 \rightarrow 6] \\ 10 & [4 \rightarrow 5] \\ 11 & [3 \rightarrow 4] \\ 12 & [2 \rightarrow 3] \\ 13 & [1 \rightarrow 2] \\ 13 & [1 \rightarrow 2] \\ TV & [NP \rightarrow 1] \\ 15 & [NA \rightarrow NP \end{array}$	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40 28.70 20.00 10.00	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
16 17 18 19 20 21 22 23 24 24 25 26 27 28	1 2 3 4 5 6 7 8 9 10 11 12 13 14	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2361.17 2362.89 2365.16 2367.48 2369.50 2374.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.01 2395.00 2394.98 2394.97 2394.95 2394.94 2394.92 2394.90	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08 30.80 28.46 26.42 21.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24 25 26 27 28	$\begin{array}{c} 3 \hspace{0.1cm} [11 \rightarrow 12] \\ 4 \hspace{0.1cm} [10 \rightarrow 11] \\ 5 \hspace{0.1cm} [9 \rightarrow 10] \\ 6 \hspace{0.1cm} [8 \rightarrow 9] \\ 7 \hspace{0.1cm} [7 \rightarrow 8] \\ 8 \hspace{0.1cm} [6 \rightarrow 7] \\ 9 \hspace{0.1cm} [5 \rightarrow 6] \\ 10 \hspace{0.1cm} [4 \rightarrow 5] \\ 11 \hspace{0.1cm} [3 \rightarrow 4] \\ 12 \hspace{0.1cm} [2 \rightarrow 3] \\ 13 \hspace{0.1cm} [1 \rightarrow 2] \\ 11 \hspace{0.1cm} [3 \rightarrow 4] \\ 12 \hspace{0.1cm} [1 \rightarrow 2] \\ 11 \hspace{0.1cm} [1 \rightarrow 2] \\ 11 \hspace{0.1cm} [1 \rightarrow 4] \\ 12 \hspace{0.1cm} [1 \rightarrow $	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40 28.70 20.00 10.00 12.97	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
16 17 18 19 20 21 22 23 24 25 26 27 28	1 2 3 4 5 6 7 8 9 10 11 12 13 14 CONE2	2353.05 2353.46 2354.65 2355.31 2356.28 2357.94 2359.01 2360.12 2360.12 2367.48 2365.16 2367.48 2369.50 2374.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.04 2395.03 2395.01 2395.00 2394.98 2394.97 2394.97 2394.92 2394.94 2394.92 2394.90	43.04 42.62 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08 28.46 26.42 21.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24 25 26 27 28	3 [11 - 12] 4 [10 - 11] 5 (9 - 10) 6 (8 - 9] 9 (7 - 7 - 8] 8 (6 - 7] 9 (5 - 6) 10 (4 - 5) 11 (3 - 4) 12 (2 - 3) 13 (1 - 2) TV (NP - 1) 15 (NA - NP 17 (14 - 18) CONEX	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40 20.00 10.00 12.97	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	
16 17 18 19 20 21 22 23 24 25 26 27 28	1 2 3 4 5 6 7 8 9 10 11 12 13 14 CONE	2353.05 2353.46 2354.65 2355.45 2355.31 2355.28 2357.94 2350.12 2360.12 2360.12 2361.17 2362.89 2361.17 2362.89 2365.16 2367.48 2369.50 2374.90 KIONES	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2395.09 2395.08 2395.07 2395.05 2395.04 2395.03 2395.00 2394.98 2394.97 2394.95 2394.94 2394.92 2394.92 2394.90	43.04 42.02 41.42 40.74 39.76 38.09 37.00 35.88 34.81 33.08 30.80 28.46 26.42 21.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 1 1 1 1 20 21 22 23 24 25 26 27 28 28 27 28 28 28 20 20 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28	3 [11 → 12] 4 [10 → 11] 5 [9 → 10] 6 [8 → 9] 7 [7 → 8] 8 [6 → 7] 9 [5 → 6] 10 [4 → 5] 11 [3 → 4] 12 [2 → 3] 13 [1 → 2] TV [NP → 1] 15 [NA → NP <u>17 [14 → 18]</u> CONEX	53.39 51.39 49.73 49.82 52.39 50.73 49.88 50.15 53.78 39.40 28.70 20.00 10.00 12.97	200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	

Ilustración 125 Memoria de Cálculo Tuberías

21. Análisis de Resultados

En la memoria de cálculo se puede observar como los resultados en cuanto a presiones tienen valores óptimos, sin embargo, en cuanto al dato de la velocidad, el valor obtenido no está dentro de las velocidades permisibles recomendadas, por lo tanto, se optó por cambiar el diámetro de la tubería, de 200 mm a 100 mm.

Para ello se realizará el siguiente procedimiento:

Redes > Configurar Parámetros > Seleccione cualquier elemento del sistema > Diámetro por Material > Seleccionar Molecor, PVC O-500, diámetro 110 mm > Aceptar > Aceptar > Sí

22. Segundo Cálculo Hidráulico

Una vez que se realizó la debida configuración, se hace un segundo cálculo hidráulico

Cálculo Hidráulico > Cálculo Hidráulico > Seleccione cualquier elemento del sistema

> Guardar memoria de Cálculo > Guardar

Ilustración 127 Valores resultantes después del segundo Cálculo Hidráulico

Al analizar los resultados, se observa que la velocidad está dentro de los valores permisibles, por lo tanto, es el diámetro de diseño.

23. Exportar Sistema a EPANET

El software HTP en su Módulo Presurizados, nos da la opción de poder exportar nuestro sistema de Agua Potable a Epanet, con la finalidad de comprobar resultados.

Redes > Exportar > Seleccione cualquier elemento del sistema > Guardar archivo en la ruta deseada y asignar un nombre > Guardar

Ilustración 1298 Resultados de Conexiones en el Software HTP

								-	- Yaa	Visor	
Plano de la Red									Ja Da	tos Pla	no
Presion							Dia 1, 12	UU AM	Nu Nu	idee	
50.00 NP	ту 1	Tabla de Red - Nudos						×	Pr	esión	
75.00 46.79	0.79 46.64	ID Nudo	Cota m	Demanda Base LPS	Demanda LPS	Altura m	Presión m	^	Lír	neas alocidad	_
n 0.79	1	Conexión NA	2282	0	0.00	2398.90	116.90				1
/elocidad NA	1	Conexión NP	2352.051	0	0.00	2398.84	46.79		B	empo éaimen Pe	arma
0.01	0.79	Conexión 1	2352.051	0	0.00	2398.69	46.64		1	Í	-
0.10 16	13	Conexión 2	2352.459	0	0.00	2398.53	46.07		ŀ	0 V V	0
1.00		Conexión 3	2353.648	0	0.00	2398.30	44.65			Ţ	_
2.00 17		Conexión 4	2354.314	0	0.00	2397.98	43.67				
0.00	\ \	Conexión 5	2355.278	0	0.00	2397.69	42.41				
	2	Conexión 6	2356.94	0	0.00	2397.40	40.46				
	46.07	Conexión 7	2358.008	0	0.00	2397.10	39.09				
		Conexión 8	2359.118	0	0.00	2396.80	37.68				
		Conexión 9	2360.168	0	0.00	2396.51	36.34				
		Conexión 10	2361.89	0	0.00	2396.22	34.33				
	12	Conexión 11	2364.155	0	0.00	2395.92	31.76				
	0.79	Conexión 12	2366.48	0	0.00	2395.60	29.12				
		Conexión 13	2368.495	0	0.00	2395.29	26.80				
		Conexión 14	2373.895	8,71	8,71	2394.89	21.00				
3 44.65		J	_								

Ilustración 1289 Resultados de Conexiones en el Software EPANET

Al comparar los resultados se puede observar que ambos softwares obtenemos los mismos parámetros.

5.2 Ejemplo 2

En una zona de un fraccionamiento, se realizará un análisis de una red de distribución de Agua Potable, es necesario revisar el comportamiento de los diámetros y las velocidades del sistema, esto debido a que se cuenta con un patrón de demanda, es decir, se realizará un cálculo con periodo extendido, el croquis se presenta a continuación:

Tanque Elevado

Ilustración 130 Croquis de la zona de interés

1. Trazo:

Redes > Trazo > Indique la posición de la conexión > Indique la siguiente posición de la conexión

Ilustración 131 Trazo de la Red

1. Reconocer:

Redes > Reconocer > Selecciona los trazos > Enter > Configuración de red > Aceptar

Ilustración 132 Reconocer Sistema

Configuración de la Red:

Redes > Configurar Parámetros > Seleccione cualquier elemento de la red > Indicar los parámetros necesarios > Aceptar

Los parámetros que se tomarán en cuenta son los siguientes:

🔄 FormularioParaLaConfigu	uracionDeOpci	ones				-		×
Propiedades Hidráulicas			Tiempo					
Propiedad	Valor		Propiedad	Hrs:Min	Calidad			
Unidades de Caudal	LPS	\sim	Duración Total	24	Propiedad		Valor	
Ecuación de Pérdidas	H-W	\sim	Intervalo Calculo Hidraulico	1:00	Parametro	NONE		
Peso Específico	1.000	÷.	Intervalo Cálculo Calidad	0:05	Unidades Densidad	mg/L		~
Viscosidad Relativa	1.000		Intervalo Patrones	1:00	Difusividad Relativa	1.000		÷
Iteraciones Máx	40		Tiompo do Inicio Patrón	0:00	Nodo Procedencia			~
Precisión	0.001		hempo de micio Paron	1.00	Tolerancia	0.010		-
	CONTINUE		Intervalo Informe	1:00	Energia			
Sistema No Equilibrado	CONTINUE	~	Liempo Inicio Informe	1:00	Propiedad		Valor	
Patrón Predeterminado		\sim	Tiempo Inicio Reloj	12 am	Rend. Bomba(%	75.00		+
Factor Demanda	1.000	-	Estadistica	NONE ~	Precio Energia/Kwł	0.00		+
Exponente Emisores	0.500	-	Reacciones		Patron de Precios			~
Informe de Estado	NONE	\sim	Propiedad	Valor	Término de Potencia	0.00		÷
CHECKFREQ	2.000	ŧ	Orden de Reacción de Flujo	1.000 🖨				
MAXCHECK	10.000	÷.	Orden de Reacción de Pared	FIRST ~]			
DAMPLIMIT	0.000	÷.	Coef. Global Flujo	0.000 ≑				
Diametro Por Material	90 - TOM PV	C-	Coef. Global Pared	0.000 🖨				
Diametro Fotótico	200.000		Concentracion Límite	0.000				
Confiniento Estatico	100.00000		Coef. Correlación Pared	0.000 🖨				
Coenciente de Rudosidad:	100.00000				A t		Const	
Longitud Esquemática	1000.000	÷			Aceptar		Cancela	ar

Ilustración 133 Configuración de Parámetros

Unidades de Caudal: LPS (Litros Por Segundo). Ecuación de Pérdidas: H-W (Hazen-William). Diámetro Estático: Diámetro 200 mm. Coeficiente de Rugosidad: 100 adim

Ilustración 134 Sistema configurado

2. Indicar Rasante

La rasante en cada una de las conexiones descenderá un metro por cada calle avanzada, quedando de esta manera como lo refleja la Ilustración 135, además que se considerará un metro como profundidad de instalación.

Elementos Hidráulicos > Conexiones > Indicar rasante > Seleccione la Conexión > Ingrese la nueva rasante > Indique la profundidad de la tubería (1.0) > Enter

Ilustración 135 Elevaciones

Ilustración 136 Conexiones con Elevaciones

3. Numerar Conexiones

La nueva numeración comenzará a partir de la conexión 4.

Elementos Hidráulicos > Conexiones > Numerar Conexiones > Ingrese el nuevo identificador numérico > Seleccione la conexión con la que comenzará la secuencia numérica

Ilustración 137 Sistema con nueva numeración

4. Indicar Demanda

Se ingresará en cada una de las conexiones la demanda correspondiente, para ello, nos servirá la Tabla 13

Elementos Hidráulicos > Conexiones > Indicar Demanda > Seleccione una conexión > Ingrese la Demanda

Conexión	1	2	3	4	5	6	7	8	9
Demanda (LPS)	4.25	5.10	4.25	5.95	8.78	0.57	1.42	1.70	14.44
									_
Conexión	10	11	12	13	14	15	16	17	=
Demanda (LPS)	5.10	0.28	0.57	4.81	20.10	3.11	2.27	0.28	-
									=

Tabla 13 Demanda en Conexiones

	Configuración de Conexión						
$\frac{1}{0.00}$	Características			Demanda			
$\frac{0.00}{105}$ 1	Elevación de Terreno(m):	105.00	* *	Categoría de Demanda:	0		
$\frac{103}{0.00}$	Profundidad de la Instalación(m):	1.00	-	Patrón de Demanda:			~
0.00	*Elevación de la Tuberia(m):	104.00	÷				
Seleccione una	Demanda Base(Ips):	4.25	* *	Resultados	0.00		_
	Calidad Inicial:	0	*	Aitura Total(m).	0.00		_
	Fuente de Calidad			Demanda Actual (Ios):	0.00		\dashv
				Calidad:	0.00		
SC				Calidad.	0.00		
3					Aceptar	Can	celar

Ilustración 138 Ingreso de Demanda Base en Conexión 14

5. Editar Numeración de Tuberías

Se cambiará el identificativo de las tuberías a partir de la que esté más cerca al tanque elevado

Elementos Hidráulicos > Tuberías > Editar Numeración > Seleccione la tubería > Ingrese el nuevo Identificativo > Enter

Ilustración 139 Cambio del ID en tuberías

6. Insertar fuente de Abastecimiento

Se insertará un Depósito como fuente de abastecimiento, para poder representar el Tanque Elevado que alimentará a la red.

Elementos Hidráulicos > Depósitos > Insertar Depósito > Seleccione un elemento del sistema > Indique la posición del Depósito

Ilustración 140 Sistema con fuente de abastecimiento (Depósito)

7. Configurar Depósito

La altura del Depósito será 10.00 metros sobre la Conexión 1, es decir:

 $A_{Deposito} = Rasante_{Conexión 1} + 10.00m$

 $A_{Deposito} = 105.00m + 10.00m = 115.00m$

Elementos Hidráulicos > Depósitos > Configurar > Seleccione un Depósito > Llene

Ilustración 141 Configuración de Embalse

8. Conectar la red con el Depósito

La conexión entre la red y el Depósito se realizará a través de insertar una tubería

Elementos Hidráulicos > Tuberías > Insertar > Seleccione un elemento inicial > Seleccione un elemento final

Ilustración 142 Tubería insertada para conectar el Sistema con el Depósito

9. Configurar la nueva Tubería

Elementos Hidráulicos > Tuberías > Configurar Parámetros > Seleccione una tubería

> Llenar el formulario > Aceptar

🕭 Configuraciór	n de Tuberia [1]		-		×
Descripción Tuboría do Conovi	á				
	on	D 1 1			
*Longitud:	91.453	Resultados Caudal:	0		_
Material	90 - TOM PVC-O 500 - Molecor	Velocidad:	0		
*Diametro:	200.000	Perdidas Unitarias:	0		
*Rugosidad:	100.00000	Factor Fricción:	0		
Coef. Perdidas:	0.000	Vel. Reacción:	0		
Estado Inicial:	OPEN ~	Calidad:	0		
Coef. Flujo:	0.000	Estado:			
Coef. Pared:	0.000	Aceptar		Cancel	ar

Ilustración 143 Configuración de Tubería nueva

Ilustración 144 Etiquetas actualizadas en la tubería nueva

10. Dar de alta Patrón de Demanda

Para realizar el diseño en Periodo Extendido, es necesario asignar un patrón de Demanda para conocer la variación que ésta tiene a lo largo de la simulación, el patrón que se creará será el siguiente:

	Patrón de Demanda para pequeñas comunidades												
1	2	3	4	5	6	7	8	9	10	11	12		
0.45	0.45	0.45	0.45	0.45	0.60	0.90	1.35	1.50	1.50	1.50	1.40		
13	14	15	16	17	18	19	20	21	22	23	24		
1.20	1.40	1.40	1.30	1.30	1.20	1.00	1.00	0.90	0.90	0.80	0.60		

Tabla 14 Patrón de Demanda

Datos > Patrones > Seleccione cualquier elemento del sistema > Crear> Llenar el formulario > Aceptar

Ilustración 145 Patrón de Demanda En Software HTP

11. Asignar Patrón de Demanda

Una vez que se dio de alta el Patrón de Demanda, es necesario que se asigne a cada una de las conexiones de la red.

Elementos Hidráulicos > Conexiones > Configuración de Parámetros > Demanda > Patrón de Demanda > Asignar el ID (1) > Aceptar

🕭 Configurar Conexión [1]	- 🗆 X
- Configuración de Conexión Descripción	
Características Elevación de Terreno(m): 105.00 Profundidad de la Instalación(m): 1.00 *Elevación de la Tuberia(m): 104.00	Demanda Categoría de Demanda: 0 Patrón de Demanda: 1
Demanda Base(Ips): 4.25	Resultados Altura Total(m): 0.00 Presión: 0.00 Demanda Actual (lps): 4.25 Calidad: 0.00
	Aceptar Cancelar

Ilustración 146 Asignación de Patrón de Demanda a Conexiones

12. Configurar las Opciones de Tiempo

Es necesario que las opciones de Tiempo sean configuradas, debido a que haremos una simulación tomando en cuenta la variación que tendrá la Demanda.

Redes > Configuración de Parámetros > Selecciona cualquier elemento del sistema > Opción Tiempo > Llenar el formulario > Aceptar

Ilustración 147 Configuración del Tiempo

13. Realizar primer Cálculo Hidráulico

Cálculo Hidráulico > Cálculo Hidráulico > Seleccione cualquier elemento del sistema

Ilustración 148 Valores resultantes después del primer Cálculo Hidráulico

Se puede observar que las conexiones y las tuberías ya contienen resultados. La memoria de cálculo se presenta a continuación:

⊟ 5 •	ð -	Ŧ							8	5	• @ -	÷								R	ed_02 - Exc	el
Archivo Inicio	o Ins	ertar	Diseño de	e página	Fórmula	as Dat	os R	evisar Vista 🖓	د Archi	vo li	nicio Ins	ertar	Diseño de	página	Fórmulas	Datos	Revis	ar Vis	ta ♡	¿Qué dese	a hacer?	
Pegar V	alibri IK <u>S</u>	•	11 · .	A A B	= = =	&⁄- €≣ ∓ ≣	🛱 Aju	star texto Ge mbinar y centrar *	ne Pegar	× ≌ ' *	Calibri N K S	•	11 · A		= =	≫ == ==	🚰 Ajustar 🗮 Combir	texto ar y centr	Ge ar + \$	neral + % 000		Formato condicional ≠
Portapapeles 🖓		Fuente		Fa		Alin	eación	5	Portapa	apeles 🖓		Fuente		Gr		Alinea	ción		rs.	Número	5	
P11 *	в	× √	f _x	E	F	G	н	L I	W20) A	▼ : B	×	f _x D PROYECTO	E Red de Dist	F	G	н	I	Ŀ	L	м	N
2 3 4 5 6 7	(ROYECTO DCALIDAI IUNICIPIO ESTADO: ARCHIVO: FECHA:	Red de Dist Fraco, Arbo Puebla Puebla Red	ribución Iedas				2 3 4 5 6 7		(Localidai Municipio Estado: Archivo: Fecha:	Fracc. Arbo Puebla Puebla Red	ledas							
8			-						8		Trees		Cond	liciones del T	ramo		<u> </u>		Cálculo H	lidráulico	¥eloc. de	<u></u>
10		Condicio	ones de cone	exiones		Cálculo H	dráulico		9		Tramo	m	mm	riugosidad mm	coer.riujo adim	oer. Pare	LPS	relocidad m/s	Pera. Unit m/km	Estado	Reacción mg/L/d	adim
11 Con	nexión	Cota m	a Base LPS	Inicial adim	Demanda LPS	Altura m	Presión m	Calidad adim	11 12		19 [13 → 16] 21 [16 → 17] 20 [17]	89.73 106.97	200.00	100.00	0.00	0.00	-3.35 0.13	0.11 0.00	0.01	OPEN OPEN	0.00	0.00
13 14 15	4 5 2	104.00 103.00 104.00	5.95 8.78 5.10	0.00 0.00 0.00	5.95 8.78 5.10	119.90 119.88 119.95	16.90 17.88 16.95	0.00	13 14 15		18 [12 → 15] 17 [13 → 14]	87.78 107.72	200.00 200.00 200.00	100.00 100.00 100.00	0.00	0.00	5.90 9.05	0.19	0.03	OPEN	0.00	0.00
16 17	1 7 10	105.00 103.00	4.25 1.42	0.00	4.25 1.42	120.24 119.75	16.24 17.75	0.00	16 17 18		16 [12 → 13] 15 [10 → 12] 14 [10 → 11]	108.16 89.02 217.15	200.00 200.00 200.00	100.00 100.00 100.00	0.00	0.00	7.85 14.01 0.13	0.25 0.45 0.00	0.07 0.18 0.00	OPEN OPEN OPEN	0.00	0.00 0.00 0.00
19 20 21	12 13 16	101.00 100.00 99.00	0.57 4.81 2.27	0.00 0.00 0.00	0.57 4.81 2.27	119.34 119.26 119.27	19.34 20.26 21.27	0.00 0.00 0.00	19 20 21 22		13 [7 → 10] 10 (5 → 8] 12 [8 → 9] 11 [7 → 8]	89.78 90.12 106.83 109.39	200.00 200.00 200.00 200.00	100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	16.43 11.10 6.50 -3.83	0.52 0.35 0.21 0.12	0.24 0.12 0.05 0.02	OPEN OPEN OPEN OPEN	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
22 23 24 25	17 8 6 3	98.00 102.00 102.00 103.00	0.28 1.70 0.57 4.25	0.00 0.00 0.00	0.28 1.70 0.57 4.25	119.27 119.77 119.90 119.91	22.27 18.77 18.90 17.91	0.00 0.00 0.00 0.00	23 24 25		$9 [4 \rightarrow 7]$ $8 [5 \rightarrow 6]$ $7 [4 \rightarrow 5]$	85.27 108.04 110.49	200.00 200.00 200.00	100.00 100.00 100.00	0.00	0.00	13.24 -3.36 3.47	0.42 0.11 0.11	0.15 0.02 0.02	OPEN OPEN OPEN	0.00 0.00 0.00	0.00 0.00 0.00
26 27 28	11 15 14	100.00 100.00 99.00	0.28 3.11 20.10	0.00	0.28 3.11 20.10	119.51 119.30 119.17	20.51 20.30 21.17	0.00 0.00 0.00	26 27 28 29		$5 [2 \rightarrow 5]$ $6 [3 \rightarrow 6]$ $3 [2 \rightarrow 3]$ $2 [1 \rightarrow 2]$	89.73 111.04 111.90	200.00 200.00 200.00 200.00	100.00 100.00 100.00 100.00	0.00 0.00 0.00	0.00	3.61 5.52 16.04	0.11 0.18 0.51	0.01 0.04 0.28	OPEN OPEN OPEN	0.00 0.00 0.00	0.00 0.00 0.00
29 30 31	9	101.00	14.44	0.00	14.44	119.72	19.72	<u>i 0.00</u>	30 31 32		4 [1→ 4] 1 [18→ 1]	93.30 91.45	200.00	100.00	0.00	0.00	19.39 37.34	0.62	0.34 1.11	OPEN OPEN	0.00	0.00
	CONE	XIONES	TUBE	RIAS	+				Listo	Þ	CONE	XIONES	TUBER	IAS	+							

Ilustración 150 Memoria de Cálculo Conexiones

Ilustración 149 Memoria de Cálculo Tuberías

14. Análisis de Resultados

En la memoria de cálculo se puede observar como los resultados en cuanto a presiones tienen valores óptimos, sin embargo, en cuanto al dato de la velocidad, el valor obtenido no está dentro de las velocidades permisibles recomendadas, por lo tanto, se optó por cambiar el diámetro de algunas tuberías, quedando de la siguiente manera:

	Diámetros tubería (mm)										
1	2	3	4	5	6	7	8	9	10	11	
200	100	50	200	100	50	100	50	200	100	100	
12	13	14	15	16	17	18	19	20	21		
100	150	50	150	100	100	100	100	100	50		
			Tahl	a 15 D	iámotr	ns en T	uhoría				

Tabla 15 Diámetros en Tubería

Elementos Hidráulicos > Tuberías > Configurar Parámetros > Seleccione una tubería

> Digitar el Diámetro de acuerdo a la Tabla anterior > Aceptar

15. Segundo Cálculo Hidráulico

Una vez que se realizó la debida configuración, se hace un segundo cálculo hidráulico

Cálculo Hidráulico > Cálculo Hidráulico > Seleccione cualquier elemento del sistema

> Guardar memoria de Cálculo > Guardar

Ilustración 151 Valores resultantes después del segundo Cálculo Hidráulico

Al analizar los resultados, se observa que la velocidad está dentro de los valores permisibles, por lo tanto, es el diámetro de diseño.

16. Simulación en Periodo Extendido

El software HTP en su Módulo Presurizados, nos da la opción de poder visualizar la variación en los resultados que ocasiona el patrón de demanda, para ello, vamos a realizar una revisión.

Cálculo Hidráulico > Revisión > Seleccione un sistema > Seleccionar los parámetros se desean que visualizar > Editar Intervalos y Colores > Avanzar o Retroceder el Tiempo > Cerrar

Ilustración 152 Revisión de Parámetros

6. Anexos

6.1 Ilustraciones

Ilustración 1 Pagina Hidráulica Termoplus- SOFWARE	4
Ilustración 2 Descarga de Manuales	4
Ilustración 3 Esquema del flujo laminar	8
Ilustración 4 Esquema del flujo en transición.	8
Ilustración 5 Esquema del flujo turbulento	8
Ilustración 6 Secciones para un Volumen de Control	9
Ilustración 7 Diagrama de Moody (Sotelo 2002)	. 15
Ilustración 8 Tipos de consumo de acuerdo con los usuarios	. 17
Ilustración 9 Tubería	. 22
Ilustración 10 Juntas	. 23
Ilustración 11 Carretes	. 23
Ilustración 12 Extremidades	. 23
Ilustración 13 Tee	. 24
Ilustración 14 Cruz	. 24
Ilustración 15 Codo	. 24
Ilustración 16 Reducción	. 25
Ilustración 17 Cople	. 25
Ilustración 18 Tapón	. 25
Ilustración 19 Ejemplo de Línea de Conducción	. 29
Ilustración 20 Conducción por Bombeo	. 30
Ilustración 21 Conducción a Gravedad	. 30
Ilustración 22 Conducción por Bombeo-Gravedad	. 31
Ilustración 23 Ejemplo Red de Distribución Cerrada	. 32
Ilustración 24 Ejemplo Red de Distribución Abierta	. 32
Ilustración 25 Ejemplo Red de Distribución Combinada	. 32
Ilustración 26 Sección de Tubería	. 33
Ilustración 27 Mezcla completa	. 42
Ilustración 28 Mezcla en dos compartimentos	. 42
Ilustración 29 Flujo en pistón FIFO	. 43
Ilustración 30 Flujo en pistón LIFO	. 43
Ilustración 31 Zonas de Reacción en el interior de una Tubería	. 44
Ilustración 32 Menú de la Aplicación	. 46
Ilustración 33 Barra de Herramientas	. 46
Ilustración 34 Barra de Menús	. 47
Ilustración 35 Cintas de Opciones	. 47
Ilustración 36 Área de Trabajo	. 47
Ilustración 37 Ventana de Comandos	. 48
Ilustración 38 Pestañas Papel/Modelo	. 48
Ilustración 39 Barras de Estado	. 48
Ilustración 40 Cinta de Opciones HTP (Módulo Sistemas Presurizados)	. 48
Ilustración 41 Inicio de del Software HTP 2022	. 49
Ilustración 42 Datos del usuario de HTP 2022.	. 50

Ilustración 43 Cinta de opciones de Red	50
Ilustración 44 Comandos del Menú Redes	51
Ilustración 45 Configuración del Sistema	52
Ilustración 46 Ventana Configuración de Color	52
Ilustración 47 Ventana Configuración de Fuente	53
Ilustración 48 Ventanas Configuración de Tipo de Línea	53
Ilustración 49 Ventana Configuración de Grosor de Línea	54
Ilustración 50 Etiquetas de Tubería	54
Ilustración 51 Bloque de parámetros en Conexiones	55
Ilustración 52 Formulario: Configuración de Parámetros	55
Ilustración 53 Formulario para selección de material	58
Ilustración 54 Confirmar cambios en el sistema	62
Ilustración 55 Bloque Elementos Hidráulicos	62
Ilustración 56 Comandos del Menú Conexiones	63
Ilustración 57 Formulario Configurar Conexión	64
Ilustración 58 Comandos del Menú Tuberías	67
Ilustración 59 Formulario Configuración de Tubería	68
Ilustración 60 Formulario para obtener coeficiente de pérdidas menores en tubería	69
Ilustración 61 Comandos del Menú Embalses	71
Ilustración 62 Formulario Configuración de Embalse	71
Ilustración 63 Comandos del Menú Depósito	73
Ilustración 64 Comandos del Menú Depósito	74
Ilustración 65 Comandos del Menú Válvulas	77
Ilustración 66 Formulario para configurar válvulas	77
Ilustración 67 Comandos del Menú Bombas	81
Ilustración 68 Formulario para configurar bomba	82
Ilustración 69 Comandos del Bloque Cálculo Hidráulico	84
Ilustración 70 Comando Cálculo Hidráulico	84
Ilustración 71 Formulario para Guardad la Memoria de Cálculo	85
Ilustración 72 Comando Revisión	85
Ilustración 73 Formulario para Revisión de Sistema	86
Ilustración 74 Parámetros para seleccionar en la opción nodos	86
Ilustración 75 Parámetros para seleccionar en la opción Líneas	87
Ilustración 76 Controles de Intervalo	88
Ilustración 77 Parámetros para Opciones de Líneas	88
Ilustración 78 Editor de Leyenda	89
Ilustración 79 Selección de Color para intervalos	89
Ilustración 80 Rangos para intervalos	90
Ilustración 81 Unidades del parámetro seleccionado	90
Ilustración 82 Formulario Paleta de Colores	91
Ilustración 83 Parámetros para Opciones de Nodos	91
Ilustración 84 Comandos del Bloque Ajustes del Sistema	92
Ilustración 85 Comandos del Menú Perfil Hidráulico	92
Ilustración 86 Ventana Configuración de Perfil	93

Ilustración 87 Nombres del Prefijo de Capas y Título del Perfil	
Ilustración 88 Comandos del Menú Geometría	
Ilustración 89 Comandos del Menú Herramientas	
Ilustración 90 Formulario Cálculo de Población	
Ilustración 91 Bloque Datos	
Ilustración 92 Comandos del Menú Datos	
Ilustración 93 Formulario Opciones Patrones	
Ilustración 94 Configuración de Patrones	
Ilustración 95 Ejemplo de Patrón de Demanda	100
Ilustración 96 Ventana para abrir archivo de texto	100
Ilustración 97 Formulario Opciones de Curvas	101
Ilustración 98 Configuración de Curvas	102
Ilustración 99 Ejemplo de Curva Característica de Bomba	103
Ilustración 100 Ventana para abrir archivo de texto	103
Ilustración 101 Croquis de localidad	105
Ilustración 102 Trazo de Línea de Conducción	105
Ilustración 103 Reconocer Sistema	106
Ilustración 104 Configuración de Parámetros	106
lustración 105 Sistema configurado	107
Ilustración 106 Calcular rasante	107
Ilustración 107 Conexiones con elevaciones o rasantes nuevas	108
Ilustración 108 Sistema con nueva numeración	108
Ilustración 109 Nueva numeración en Conexiones NA y NP	109
Ilustración 110 Configuración de Conexión NP	109
Ilustración 111 Ingreso de Demanda Base en Conexión 14	110
Ilustración 112 Cambio del ID en tubería del Tren de Válvulas	110
Ilustración 113 Cálculo del Coeficiente de Pérdidas Menores en Tubería TV	
Ilustración 114 Sistema con fuente de abastecimiento (Embalse)	111
Ilustración 115 Configuración de Embalse	112
Ilustración 116 Sistema con Bomba insertada	112
Ilustración 117 Curva Característica de la Bomba para el Sistema	113
Ilustración 118 Asignar Curva Característica a la Bomba	113
Ilustración 119 Depósito insertado en el Sistema	
Ilustración 120 Configuración del Depósito	115
Ilustración 121 Tubería insertada para conectar el Sistema con el Depósito	115
Ilustración 122 Configuración de Tubería nueva	116
Ilustración 123 Etiquetas actualizadas en la tubería nueva	116
Ilustración 124 Valores resultantes después del primer Cálculo Hidráulico	117
Ilustración 125 Memoria de Cálculo Tuberías	117
Ilustración 126 Memoria de Cálculo Conexiones	117
Ilustración 127 Valores resultantes después del segundo Cálculo Hidráulico	118
Ilustración 129 Resultados de Conexiones en el Software EPANET	119
Ilustración 128 Resultados de Conexiones en el Software HTP	119
Ilustración 130 Croquis de la zona de interés	120

Ilustración 131 Trazo de la Red	120
Ilustración 132 Reconocer Sistema	121
Ilustración 133 Configuración de Parámetros	121
Ilustración 134 Sistema configurado	122
Ilustración 135 Elevaciones	122
Ilustración 136 Conexiones con Elevaciones	123
Ilustración 137 Sistema con nueva numeración	123
Ilustración 138 Ingreso de Demanda Base en Conexión 14	124
Ilustración 139 Cambio del ID en tuberías	124
Ilustración 140 Sistema con fuente de abastecimiento (Depósito)	125
Ilustración 141 Configuración de Embalse	125
Ilustración 142 Tubería insertada para conectar el Sistema con el Depósito	126
Ilustración 143 Configuración de Tubería nueva	126
Ilustración 144 Etiquetas actualizadas en la tubería nueva	127
Ilustración 145 Patrón de Demanda En Software HTP	127
Ilustración 146 Asignación de Patrón de Demanda a Conexiones	128
Ilustración 147 Configuración del Tiempo	128
Ilustración 148 Valores resultantes después del primer Cálculo Hidráulico	129
Ilustración 149 Memoria de Cálculo Tuberías	129
Ilustración 150 Memoria de Cálculo Conexiones	129
Ilustración 151 Valores resultantes después del segundo Cálculo Hidráulico	130
Ilustración 152 Revisión de Parámetros	131

6.2 Ecuaciones

Ecuación 1 Número de Reynolds	7
Ecuación 2 Continuidad	8
Ecuación 3 Conservación de la Energía	9
Ecuación 4 Conservación de la Energía entre dos secciones	9
Ecuación 5 Pérdidas por fricción - Hazen Williams	10
Ecuación 6 Pérdidas por fricción - Chezy Manning	10
Ecuación 7 Pérdidas por fricción - Darcy Weisbach	11
Ecuación 8 Hagen-Poiseuille	13
Ecuación 9 Coolebrook y White	14
Ecuación 10 Pérdidas por accesorios	15
Ecuación 11 Gasto medio diario	19
Ecuación 12 Gasto máximo diario	20
Ecuación 13 Gasto máximo horario	20
Ecuación 14 Coeficiente de Emisor	28
Ecuación 15 Conservación de la Energía con carga HB	30
Ecuación 16 Ecuación de Continuidad para dos secciones	34
Ecuación 17 Conservación de Cantidad de Movimiento	35
Ecuación 18 Área transversal del tubo	35
Ecuación 19 Área transversal del tubo (2)	35
Ecuación 20 Continuidad en Nodos	36

Ecuación 21 Gasto Suministrado en la Red	
Ecuación 22 Coeficiente de descarga	
Ecuación 23 Gasto suministrado a la Red con coeficiente de descarga	
Ecuación 24 Gasto aportado en cualquier instante	
Ecuación 25 Parámetro τ	
Ecuación 26 Parámetro ρ	
Ecuación 27 Parámetro qa	
Ecuación 28 Pérdida de carga en una tubería	38
Ecuación 29 Pérdida de energía en bombas	38
Ecuación 30 Sistema Equilibrado	38
Ecuación 31 Matriz para Método del Gradiente	39
Ecuación 32 Diagonal principal	39
Ecuación 33 Elementos no nulos	39
Ecuación 34 Matriz inversa para tuberías	39
Ecuación 35 Matriz inversa para bombas	39
Ecuación 36 Factor de corrección	39
Ecuación 37 Factor de corrección del caudal Yij	40
Ecuación 38 Factor de corrección del caudal Yij (2)	40
Ecuación 39 Nuevos Caudales	40
Ecuación 40 Análisis Equipo de Bombeo mediante serie de Taylor	40
Ecuación 41 Parámetros para la obtención de la serie de Taylor	40
Ecuación 42 Pérdidas en válvulas	40
Ecuación 43 Velocidad de Reacción	
Ecuación 44 Velocidad de Reacción por crecimiento	
Ecuación 45 Velocidad de Reacción por decrecimiento	45
Ecuación 46 Reacción de Pared	45

6.3 Tablas

Tabla 1 Rugosidades para diferentes materiales (Sotelo 2002) 1 de 3	11
Tabla 2 Rugosidades para diferentes materiales (Sotelo 2002) 2 de 3	13
Tabla 3 Rugosidades para diferentes materiales (Sotelo 2002) 3 de 3	13
Tabla 4 Coeficiente K para diferentes accesorios (Sotelo 2002)	16
Tabla 5 Consumo doméstico en el medio rural	17
Tabla 6 Promedio del consumo de agua potable estimado por clima predominante	18
Tabla 7 Promedio del consumo de agua potable estimado según nivel socioeconómico y c	lima 18
Tabla 8 Coeficiente de variación diaria y horaria	21
Tabla 9 Gasto de diseño para estructuras de agua	21
Tabla 10 Velocidades permisibles para diferentes tipos de materiales	22
Tabla 11 Tipos de Válvula que maneja el Software HTP	78
Tabla 12 Consigna de los tipos de Válvula	79
Tabla 13 Demanda en Conexiones	124
Tabla 14 Patrón de Demanda	127
Tabla 15 Diámetros en Tubería	130

6.4 Gráficas

Gráfica 1 Curva característica de una bomba2	28
	.0

7. Bibliografía

Comisión Nacional del Agua. Manual de agua potable, alcantarillado y saneamiento. Alcantarillado Sanitario-Libro 4 Datos Básicos para Proyectos de Agua Potable y Alcantarillado. CNA, 2015.

Comisión Nacional del Agua. *Manual de agua potable, alcantarillado y saneamiento. Alcantarillado Sanitario-Libro 10 Conducciones.* CNA, 2015.

Comisión Nacional del Agua. *Manual de agua potable, alcantarillado y saneamiento. Alcantarillado Sanitario-Libro 12 Diseño de Redes de Distribución de Agua Potable.* CNA, 2015.

De Plaza Solórzano, Juan Sebastián. (2017). *EJERCICIOS PRÁCTICOS EN EPANET: Ejercicios básicos de mecánica de fluidos e hidráulica aplicados a través del software de distribución gratuita EPANET 2.0.* Universidad Piloto de Colombia, Bogotá, Colombia.

Martínez Alzamora, Fernando, Grupo de Redes Hidráulicas y Sistemas a Presión (REDHISP), Instituto de Ingeniería del Agua y Medio Ambiente y Universidad Politécnica de Valencia (España). (2017). *EPANET 2.0 en español: Análisis Hidráulico y de Calidad en Redes de Distribución de Agua, Manual de Usuario Versión 2.00.12*. Universidad Politécnica de Valencia. Valencia, España.

Sotelo, G. (2010). *Hidráulica General I: Fundamentos*. Facultad de Ingeniería, UNAM., México, D.F.

Hidráulica Termoplus

MANUAL DE USUARIO SOFTWARE HTP MÓDULO PRESURIZADOS

LA NORIA. 3a Cerrada de la 23 Sur #4501 Col. Granjas Atoyac Puebla, Pue T. 222 230 53 93 Cel. 222 356 4662 PLAZA AMÉRICA. 51 pte. #505, Local-21 Col. Residencial Boulevares Puebla, Pue T. 222 211 6359

termoplus@termoplus.mx | termoplus.mx 🚹 🙆 🖸